Skip to main content
Log in

A study of different modes of fatigue fracture and durability estimation for compressor disks of gas-turbine engines

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Various criteria of multiaxial fatigue fracture are studied for low-cycle fatigue (LCF); their generalizations are proposed for a very-high-cycle fatigue (VHCF) regime. The procedure of the stress state calculation is described for the compressor disk of the gas-turbine engine (GTE) in the flight cycle of loading and for the low-amplitude vibrations of the blades. The durability estimations of the disk operation are obtained for alternative mechanisms of LCF and VHCF using the calculated stress state and the models of multiaxial fatigue fracture. The results are compared with the data observed during operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shanyavskii, Modeling of Metal Fatigue Fracture (Monografiya, Ufa, 2007) [in Russian].

    Google Scholar 

  2. N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin, “Models of multiaxial fatigue fracture and service life estimation of structural elements,” Mech. Solids 46, 828–838 (2011).

    Article  Google Scholar 

  3. M. A. Meggiolaro, A. C. Miranda, and J. de Castro, “Comparison among fatigue life prediction methods and stress-strain models under multiaxial loading,” in Proceedings of the 19th International Congress of Mechanical Engineering COBEM 2007, Brasilia, DF, Brazil, Nov. 5–9, 2007.

    Google Scholar 

  4. D. F. Socie and G. B. Marquis, Multiaxial Fatigue (Society of Automotive Engineers, Warrendale, PA, 2000), pp. 129–169.

    Book  Google Scholar 

  5. N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, “Multiaxial fatigue of titanium including step loading and path alternation and sequence affects,” Int. J. Fatigue 32, 1862–1874 (2010).

    Article  Google Scholar 

  6. J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials (Cambridge Univ. Press, Cambridge, 1994).

    MATH  Google Scholar 

  7. J. L. Chaboche and P. M. Lesne, “Non-linear continuous fatigue damage model,” Fatigue Fract. Eng. Mater. Struct. 11, 1–17 (1988).

    Article  Google Scholar 

  8. A. K. Marmi, A. M. Habraken, and L. Duchene, “Multiaxial fatigue damage modeling at macro scale of Ti6Al4V alloy,” Int. J. Fatigue 31, 2031–2040 (2009).

    Article  Google Scholar 

  9. I. V. Papadopoulos, P. Davoli, C. Goria, M. Filippini, and A. Bernasconi, “A comparative study of multiaxial high-cycle fatigue criteria for metals,” Int. J. Fatigue 19, 219–235 (1997).

    Article  Google Scholar 

  10. Ying-Yu Wang and Wei-Xing Yao, “Evaluation and comparison of several multiaxial fatigue criteria,” Int. J. Fatigue 26, 17–25 (2004).

    Article  MathSciNet  Google Scholar 

  11. G. Sines, Behavior of Metals under Complex Static and Alternating Stresses. Metal Fatigue (McGraw-Hill, New York, 1959), pp. 145–169.

    Google Scholar 

  12. B. Crossland, “Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel,” in Proceedings of the International Conference on Fatigue of Metals (London, 1956), pp. 138–149.

    Google Scholar 

  13. W. N. Findley, “A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending,” J. Eng. Ind., 301–306 (1959).

  14. C. Bathias and P. C. Paris, Gigacycle Fatigue in Mechanical Practice (Marcel Dekker, New York, 2005).

    Google Scholar 

  15. N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin, “Stress state analysis of gas turbine engine contact system “disc-blades”,” Vychisl. Mekh. Splosh. Sred 4 (2), 5–16 (2011).

    Google Scholar 

  16. V. Bonnand, J. L. Chaboche, H. Cherouali, P. Kanoute, E. Ostoja-Kuczynski, and F. Vogel, “Investigation of multiaxial fatigue in the prospect of turbine disc applications. Part II: Fatigue criteria analysis and formulation of a new combined one,” in Proceedings of the 9th International Conference of Multiaxial Fatigue and Fracture ICMFF9, Parma, Italy, 2010, pp. 691–698.

    Google Scholar 

  17. N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin, “Very-high-cycle fatigue fracture of titanium compressor disks,” Vestn. Perm. Nats. Politekh. Univ., Mekh., No. 1, 52–67 (2013).

    Google Scholar 

  18. A. M. Mkhitaryan, Aerodynamics (Mashinostroenie, Moscow, 1976; PN, New York, 1972).

    Google Scholar 

  19. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics (Fizmatgiz, Moscow, 1963; Wiley, New York, 1964), Part 1.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Nikitin.

Additional information

Original Russian Text © N.G. Burago, A.B. Zhuravlev, I.S. Nikitin, V.L. Yakushev, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 2, pp. 53–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burago, N.G., Zhuravlev, A.B., Nikitin, I.S. et al. A study of different modes of fatigue fracture and durability estimation for compressor disks of gas-turbine engines. Math Models Comput Simul 8, 523–532 (2016). https://doi.org/10.1134/S2070048216050070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216050070

Keywords

Navigation