Skip to main content
Log in

Simulation of Oil Recovery Processes with the Employment of High-Performance Computing Systems

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The problems of mathematical modeling of two-phase flows in porous media, and in particular, the simulation of oil recovery processes, are considered. An economical numerical algorithm based on the kinetic approach with the use of explicit schemes is proposed to ensure the efficiency of the employment of modern supercomputers with a hybrid architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Konovalov, Problems of Multiphase Fluid Filtration (Nauka, Novosibirsk, 1988; World Scientific, Singapore, 1994).

    Google Scholar 

  2. Yu. M. Laevskii, P. E. Popov, and A. A. Kalinkin, “Simulation of two-phase fluid filtration by mixed finite element method,” Mat. Model. 22 (3), 74–90 (2010).

    MathSciNet  Google Scholar 

  3. M. A. Trapeznikova, M. S. Belotserkovskaya, and B. N. Chetverushkin, “Analog of kinetically consistent schemes for simulation of a filtration problem,” Mat. Model. 14 (10), 69–76 (2002).

    MathSciNet  MATH  Google Scholar 

  4. B. N. Chetverushkin, D. N. Morozov, M. A. Trapeznikova, N. G. Churbanova, and E. V. Shil’nikov, “An explicit scheme for the solution of the filtration problems,” Math. Models Comput. Simul. 2, 669–677 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (Maks-Press, Moscow, 2004; CIMNE, Barcelona, 2008).

    MATH  Google Scholar 

  6. D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, and N. G. Churbanova, “Application of explicit schemes for the simulation of the two phase filtration process,” Math. Models Comput. Simul. 4, 62–67 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. N. Morozov, B. N. Chetverushkin, N. G. Churbanova, and M. A. Trapeznikova, An explicit algorithm for porous media flow simulation using GPUs, in Proceedings of the 2nd International Conference on Parallel, Dis-ributed, Grid and Cloud Computing for Engineering, Ajaccio, Corsica, France, April 12–15, 2011, Ed. by B. N. V. Topping et al. (CIVIL-COMP PRESS, Stirlingshire, Scotland, UK), CD-ROM, No.19.

  8. M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, and D. N. Morozov, “Two-phase porous media flow simulation on a hybrid cluster,” in Large-Scale Scientific Computing, Proceedings of the 8th International Conference LSSC 2011, Sozopol, Bulgaria, June 6–10, 2011, Ed. by I. Lirkov, S. Margenov, and J. Waśniewski, Lect. Notes Comp. Sci., Vol. 7116 (Springer, Berlin, Heidelberg, 2012), pp. 644–651.

    MathSciNet  MATH  Google Scholar 

  9. B. N. Chetverushkin and A. A. Kuleshov, “Problems of supercomputer application for solution of oil-gas complex problems,” Vestn. TsKR Rosnedra, No. 3, 9–14 (2013).

    Google Scholar 

  10. R. Helmig, Multiphase Flow and Transport Processes in the Subsurface — A Contribution to the Modeling of Hydrosystems (Springer, Berlin, 1997).

    Book  Google Scholar 

  11. P. Bastian, “Numerical computation of multiphase flows in porous media,” Habilitation Thesis (ChristianAlbrechts-Univ., Kiel, 1999).

    Google Scholar 

  12. R. H. Brooks and A. T. Corey, “Hydraulic properties of porous media,” Colorado State Univ. Hydrology Paper (Colorado State Univ., Fort Collins, 1964), Vol.3.

  13. D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, and N. G. Churbanova, “Simulation of filtration problems on hybrid computer systems,” Math. Models Comput. Simul. 5, 208–212 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Lyupa, D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, and N. G. Churbanova, “Three phase filtration modeling by explicit methods on hybrid computer systems,” Math. Models Comput. Simul. 6, 551–559 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. www.kiam.ru/

  16. B. N. Chetverushkin, N. G. Churbanova, M. A. Trapeznikova, A. A. Sukhinov, and A. A. Malinovskij, “Adaptive Cartesian mesh refinement for simulating multiphase flows in porous media,” Comput. Methods Appl. Math. 8, 101–115 (2008).

    MathSciNet  MATH  Google Scholar 

  17. 10th SPE Comparative Solution Project. http://www.spe.org/csp/

  18. M. A. Christie and M. J. Blunt, “Tenth SPE comparative solution project: a comparison of upscaling techniques,” SPE Reservoir Eval. Eng., 4(04) (2001); Paper SPE No. 66599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Morozov.

Additional information

Original Russian Text © A.A. Lyupa, D.N. Morozov, M.A. Trapeznikova, B.N. Chetverushkin, N.G. Churbanova, S.V. Lemeshevsky, 2015, published in Matematicheskoe Modelirovanie, 2015, Vol. 27, No. 9, pp. 73–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyupa, A.A., Morozov, D.N., Trapeznikova, M.A. et al. Simulation of Oil Recovery Processes with the Employment of High-Performance Computing Systems. Math Models Comput Simul 8, 129–134 (2016). https://doi.org/10.1134/S2070048216020095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216020095

Keywords

Navigation