Skip to main content
Log in

Validation results for the LOGOS multifunction software package in solving problems of aerodynamics and gas dynamics for the lift-off and injection of launch vehicles

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper discusses the applications of the LOGOS software package in the mathematical simulation of supersonic turbulent jets and transonic airfoil based on the Navier-Stokes equations with appropriate turbulence models. The calculation results are given for anisobaric flow streams. The theoretical and experimental results were compared for typical operation regimes of launch vehicle engines during lift-off. We give the results of the calculations for a transonic airfoil of a hammerhead payload fairing of a launch vehicle and compare them with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Pogosyan, E. P. Savel’evskikh, R. M. Shagaliev, A. S. Kozelkov, D. Yu. Strelets, A. A. Ryabov, A V. Kornev, Yu. N. Deryugin, V. F. Spiridonov, and K. V. Tsiberev, “Application of national supercomputer technologies in designing advanced aircrafts,” in Proc. RFNC-VNIIEF, Vyp. 2 (Sarov, 2013), pp. 3–18.

    Google Scholar 

  2. Yu. N. Deryugin, A. S. Kozelkov, V. F. Spiridonov, and K. V. Tsiberev, and R. M. Shagaliev, “LOGOS multifunction software package for heat- and mass transfer problems and structural analysis,” Proc. St. Petersburg Meeting “Science and Society” (2012), p. 102.

    Google Scholar 

  3. State Registration Certificate for the computer software, “The LOGOS software package, ver. 4.0,” no. 2012616677.

  4. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  5. P. R. Spalart and S. R. Allmares, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper, No. 92-0439 (1992).

    Google Scholar 

  6. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974).

    Article  MATH  Google Scholar 

  7. Y. S. Chen and S. W. Kim, “Computation of turbulent flows using an extended turbulence closure model”, Preprint CR-179204 (NASA, 1987).

    Google Scholar 

  8. V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence — I: Basic theory,” J. Scientific Computing, 1, 1–51 (1986).

    Article  MathSciNet  Google Scholar 

  9. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Phys. Fluids A, 4(7), 1510–1520 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. S. Lien, W. L. Chen, and M. A. Leschziner, “Low-Reynolds-number Eddy-viscosity modelling Based on non-linear stress-strain/vorticity relations,” in Proc. 3rd Symp. on Engineering Turbulence Modelling and Measurements (Crete, Greece, 1996).

    Google Scholar 

  11. D. C. Wilcox, Turbulence Modelling for CFD (DCW, 1998).

    Google Scholar 

  12. Menter F.R. “Zonal two equation turbulence models for aerodynamic flows,” AIAA Paper No. 93-2906 (1993).

    Google Scholar 

  13. T. J. Coakley, “Turbulence modeling methods for the compressible Navier-Stokes equations,” AIAA Paper No. 83-1693 (1983).

    Google Scholar 

  14. K. N. Volkov and V. N. Emel’yanov, Large-Eddy Simulation for Calculations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  15. J. Smagorinsky, “General circulation experiments with the primitive equations,” Monthly Weather Review, 91(3), 99–165 (1963).

    Article  Google Scholar 

  16. C. W. Shu and S. Jsher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys., 77(2), 439–471 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Yu. Artem’ev, Yu. G. Bertenev, V. G. Basalov, Yu. A. Bondarenko, A. M. Vargin, A. A. Golubev, V. A. Erzunov, A. V. Lomtev, A. S. Maksimov, A. I. Panov, A. I. Prokof’ev, M. D. Romanova, N. V. Frolova, and E. B. Shchanikova, “Library of solvers of sparse systems,” in Proc. RFNC-VNIIEF (Sarov, 2004).

    Google Scholar 

  18. A. A. Golubev, Yu. N. Deryugin, D. K. Zelenskii, A. S. Kozelkov, D. P. Silaev, and P. G. Simonov, “The LOGOS software package. Development and realization of the algebraic multigrid method,” in Proc. XIV Int. Conf. on Supercomputing and Mathematical Modeling (Sarov, 2012), p. 58.

    Google Scholar 

  19. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gasdynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  20. S. Osher, “Riemann solvers, the entropy condition and difference approximations,” SIAM J. Numer. Anal. 21(2), 217–235.

  21. P. L. Roe, “Approximate Riemann problem solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 49(6), 357–393 (1983).

    MathSciNet  Google Scholar 

  22. M.-S. Liou, “A sequel to AUSM: AUSM+,” J. Comput. Phys. 129, 364–382 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. J. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357–393 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. R. Chakravarthy and S. A. Osher, “A new class of high-accuracy TVD schemes for hyperbolic conservation laws,” AIAA Paper, No. 85-0363 (1985).

    Google Scholar 

  25. D. L. Tweedt, R. V. Chima, and E. Turkel, “Preconditioning for numerical simulation of low mach number three-dimensional viscous turbomachinery flows,” AIAA Paper No. 97-1828 (1997).

    Google Scholar 

  26. A.V. Safronov and V.A. Khotulev, “Results of experimental studies of supersonic submerged cold and hot jets,” Kosmonavtika i Raketostr., no. 3(56), 15–23 (2009).

    Google Scholar 

  27. B. N. Dan’kov, A. P. Kosenko, V. N. Kulikov, and V. N. Otmennikov, “Distinctive features of the transonic flow past a cone-cylinder body at large angles of the bend in the body generator at the leading corner edge,” Fluid Dynamics 41(2), 211–223 (2006).

    Article  Google Scholar 

  28. B. N. Dan’kov, A. P. Kosenko, V. N. Kulikov, and V. N. Otmennikov, “Distinctive features of the transonic flow past a cone-cylinder body at small angles of the bend in the body generator at the leading corner edge,” Fluid Dynamics 41(3), 447–459 (2006).

    Article  Google Scholar 

  29. B. N. Dan’kov, A. P. Kosenko, V. N. Kulikov, and V. N. Otmennikov, “Wave disturbances in transonic separated flows,” Fluid Dynamics 41(6), 992–1003 (2006).

    Article  Google Scholar 

  30. B. N. Dan’kov, A. P. Kosenko, V. N. Kulikov, and V. N. Otmennikov, “Distinctive features of the transonic flow behind the trailing corner edge of an oversized cone-cylinder body,” Fluid Dynamics 42(3), 472–484 (2007).

    Article  MATH  Google Scholar 

  31. State Registration Certificate for the computer software, “The LOGOS software package, ver. 4.0,” no. 2012616677.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panasenko.

Additional information

Original Russian Text © Yu.N. Deryugin, R.N. Zhuchkov, D.K. Zelenskiy, A.S. Kozelkov, A.V. Sarazov, N.F. Kudimov, Yu.M. Lipnickiy, A.V. Panasenko, A.V. Safronov, 2014, published in Matematicheskoe Modelirovanie, 2014, Vol. 26, No. 8, pp. 83–95.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryugin, Y.N., Zhuchkov, R.N., Zelenskiy, D.K. et al. Validation results for the LOGOS multifunction software package in solving problems of aerodynamics and gas dynamics for the lift-off and injection of launch vehicles. Math Models Comput Simul 7, 144–153 (2015). https://doi.org/10.1134/S2070048215020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048215020052

Keywords

Navigation