Skip to main content
Log in

Some pathways in non-linear supersymmetry: Special geometry Born-Infeld’s, cosmology and dualities

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

This review is devoted to some aspects of non-linear Supersymmetry in four dimensions that can be efficiently described via nilpotent superfields, in both rigid and curved Superspace. Our focus is mainly on the partial breaking of rigid N = 2 Supersymmetry and on a class of generalized Born-Infeld systems that originate from Special Geometry and on some prototype cosmological models, starting from the Supergravity embedding of Starobinsky inflation. However, as an aside we also review briefly some interesting two-field extensions of the Born-Infeld Lagrangian whose field equations enjoy extended duality symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Coleman, J. Wess and B. Zumino, “Structure of phenomenological Lagrangians. 1.,” Phys. Rev. 177, 2239 (1969)

    Article  Google Scholar 

  2. C. G. Callan, Jr., S. R. Coleman, J. Wess and B. Zumino, “Structure of phenomenological Lagrangians. 2.,” Phys. Rev. 177, 2247 (1969)

    Article  Google Scholar 

  3. J. Wess and B. Zumino, “Consequences of anomalousWard identities,” Phys. Lett. B 37, 95 (1971)

    Article  MathSciNet  Google Scholar 

  4. E. Witten, “Global aspects of current algebra,” Nucl. Phys. B 223 (1983).

  5. M. Rocek, “Linearizing the Volkov-Akulov model,” Phys. Rev. Lett. 41, 451 (1978)

    Article  Google Scholar 

  6. U. Lindstrom and M. Rocek, “Constrained local superfields,” Phys. Rev. D 19, 2300 (1979).

    Article  Google Scholar 

  7. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, “Nonlinear realization of supersymmetry algebra from supersymmetric constraint,” Phys. Lett. B 220, 569 (1989).

    Article  MathSciNet  Google Scholar 

  8. Z. Komargodski and N. Seiberg, “From linear SUSY to constrained superfields,” JHEP 0909, 066 (2009) [arXiv:0907.2441 [hep-th]].

    Article  MathSciNet  Google Scholar 

  9. E. Witten, “Constraints on supersymmetry breaking,” Nucl. Phys. B 202, 253 (1982).

    Article  Google Scholar 

  10. S. Ferrara and L. Maiani, “An introduction to supersymmetry breaking in extended supergravity,” CERNTH-4232/85, in Proc. of 5th SILARG Symposium on Relativity, Supersymmetry and Cosmology (Bariloche, Argentina, 4-11 Jan 1985).

    Google Scholar 

  11. S. Cecotti, L. Girardello and M. Porrati, “Ward identities of local supersymmetry and spontaneous breaking of extended supergravity,” CERN-TH-4256/85m, in Proc. of Johns HopkinsWorkshop on Current Problems in Particle Theory 9: New Trends in Particle Theory (Florence, Italy, 5-7 Jun 1985).

    Google Scholar 

  12. S. Cecotti, L. Girardello and M. Porrati “An exceptionalN = 2 supergravity with flat potential and partial superhiggs,” Phys. Lett. B 168, 83 (1986)

    Article  MathSciNet  Google Scholar 

  13. S. Cecotti, L. Girardello and M. Porrati “Constraints on partial superhiggs,” Nucl. Phys. B 268, 295 (1986).

    Article  MathSciNet  Google Scholar 

  14. J. Hughes and J. Polchinski, “Partially broken global supersymmetry and the superstring,” Nucl. Phys. B 278, 147 (1986)

    Article  MathSciNet  Google Scholar 

  15. J. Hughes, J. Liu and J. Polchinski, “Supermembranes,” Phys. Lett. B 180, 370 (1986).

    Article  MathSciNet  Google Scholar 

  16. S. Ferrara, L. Girardello and M. Porrati, “Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity,” Phys. Lett. B 366, 155 (1996) [hep-th/9510074]

    Article  MathSciNet  Google Scholar 

  17. S. Ferrara, L. Girardello and M. Porrati, “Spontaneous breaking of N=2 to N=1 in rigid and local supersymmetric theories,” Phys. Lett. B 376, 275 (1996) [hep-th/9512180].

    Article  MathSciNet  Google Scholar 

  18. I. Antoniadis, H. Partouche and T. R. Taylor, “Spontaneous breaking of N=2 global supersymmetry,” Phys. Lett. B 372, 83 (1996) [hep-th/9512006]

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Partouche and B. Pioline, “Partial spontaneous breaking of global supersymmetry,” Nucl. Phys. Proc. Suppl. 56 B, 322 (1997) [hep-th/9702115], Proc. of 30th Ahrenshoop International Symposiumon the Theory of Elementary Particles (Buckow, Germany, 27-31 Aug. 1996)

    Article  MathSciNet  Google Scholar 

  20. J. Bagger and A. Galperin, “A New Goldstone multiplet for partially broken supersymmetry,” Phys. Rev. D 55, 1091 (1997) [hep-th/9608177].

    Article  MathSciNet  Google Scholar 

  21. J. Bagger and A. Galperin, “The TensorGoldstone multiplet for partially broken supersymmetry,” Phys. Lett. B 412, 296 (1997) [hep-th/9707061].

    Article  Google Scholar 

  22. M. Rocek and A. A. Tseytlin, “Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions,” Phys. Rev. D 59, 106001 (1999) [hep-th/9811232].

    Article  MathSciNet  Google Scholar 

  23. D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, “Progress toward a theory of supergravity,” Phys. Rev. D 13, 3214 (1976)

    Article  MathSciNet  Google Scholar 

  24. S. Deser and B. Zumino, “Consistent supergravity,” Phys. Lett. B 62, 335 (1976).

    Article  MathSciNet  Google Scholar 

  25. D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge Univ. Press, Cambridge, UK, 2012).

    Book  MATH  Google Scholar 

  26. I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, “The Volkov-Akulov-Starobinsky supergravity,” Phys. Lett. B 733, 32 (2014) [arXiv:1403.3269 [hep-th]].

    Article  MathSciNet  Google Scholar 

  27. A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91, 99 (1980).

    Article  Google Scholar 

  28. R. Kallosh and A. Linde, “Non-minimal inflationary attractors,” JCAP 1310, 033 (2013) [arXiv:1307.7938]

    Article  Google Scholar 

  29. R. Kallosh and A. Linde, “Superconformal generalizations of the Starobinsky model,” JCAP 1306, 028 (2013) [arXiv:1306.3214 [hepth]].

    Article  MathSciNet  Google Scholar 

  30. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, 2 vols. (Cambridge Univ. Press, Cambridge, UK, 1987)

    MATH  Google Scholar 

  31. J. Polchinski, String theory, 2 vols (Cambridge Univ. Press, Cambridge, UK, 1998)

    Book  Google Scholar 

  32. C. V. Johnson, D-Branes (Cambridge Univ. Press, USA, 2003)

    MATH  Google Scholar 

  33. B. Zwiebach, A First Course in String Theory (Cambridge Univ. Press, Cambridge, UK, 2004)

    Book  MATH  Google Scholar 

  34. K. Becker, M. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge Univ. Press, Cambridge, UK, 2007)

    Google Scholar 

  35. E. Kiritsis, String Theory in a Nutshell (Princeton Univ. Press, Princeton, NJ, 2007).

    MATH  Google Scholar 

  36. S. Sugimoto, “Anomaly cancellations in type I D9-D9-bar system and the USp(32) string theory,” Prog. Theor. Phys. 102, 685 (1999) [arXiv:hep-th/9905159]

    Article  MathSciNet  Google Scholar 

  37. I. Antoniadis, E. Dudas and A. Sagnotti, “Brane supersymmetry breaking,” Phys. Lett. B 464, 38 (1999) [arXiv:hep-th/9908023]

    Article  MATH  MathSciNet  Google Scholar 

  38. C. Angelantonj, “Comments on open-string orbifolds with a non-vanishing B(ab),” Nucl. Phys. B 566, 126 (2000) [arXiv:hepth/9908064]

    Article  MATH  MathSciNet  Google Scholar 

  39. G. Aldazabal and A. M. Uranga, “Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems,” JHEP 9910, 024 (1999) [arXiv:hep-th/9908072]

    Article  MathSciNet  Google Scholar 

  40. C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, “Type I vacua with brane supersymmetry breaking,” Nucl. Phys. B 572, 36 (2000) [arXiv:hep-th/9911081].

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Sagnotti, “Open strings and their symmetry groups,” [arXiv:hep-th/0208020], in Cargese’ 87, Non-Perturbative Quantum Field Theory, p. 521, eds. G. Mack et al. (Pergamon Press, 1988)

    Google Scholar 

  42. G. Pradisi and A. Sagnotti, “Open string orbifolds,” Phys. Lett. B 216, 59 (1989)

    Article  MathSciNet  Google Scholar 

  43. P. Horava, “Strings on world sheet orbifolds,” Nucl. Phys. B 327, 461 (1989)

    Article  MathSciNet  Google Scholar 

  44. P. Horava, “Background duality of open string models,” Phys. Lett. B 231, 251 (1989)

    Article  MathSciNet  Google Scholar 

  45. M. Bianchi and A. Sagnotti, “On the systematics of open string theories,” Phys. Lett. B 247, 517 (1990)

    Article  MathSciNet  Google Scholar 

  46. M. Bianchi and A. Sagnotti, “Twist symmetry and open string Wilson lines,” Nucl. Phys. B 361, 519 (1991)

    Article  MathSciNet  Google Scholar 

  47. M. Bianchi, G. Pradisi and A. Sagnotti, “Toroidal compactification and symmetry breaking in open string theories,” Nucl. Phys. B 376, 365 (1992)

    Article  MathSciNet  Google Scholar 

  48. A. Sagnotti, “A Note on the Green-Schwarz mechanism in open string theories,” Phys. Lett. B 294, 196 (1992) [arXiv:hep-th/9210127].

    Article  Google Scholar 

  49. E. Dudas, “Theory and phenomenology of type I strings and M-theory,” Class. Quant. Grav. 17, R41 (2000) [arXiv:hepph/ 0006190]

    Article  MATH  MathSciNet  Google Scholar 

  50. C. Angelantonj and A. Sagnotti, “Open strings,” Phys. Rept. 371, 1 (2002), [Erratum-ibid. 376, 339 (2003)] [arXiv:hep-th/0204089].

    Article  MATH  MathSciNet  Google Scholar 

  51. E. Dudas and J. Mourad, “Consistent gravitino couplings in nonsupersymmetric strings,” Phys. Lett. B 514, 173 (2001) [hep-th/0012071]

    Article  MATH  Google Scholar 

  52. G. Pradisi and F. Riccioni, “Geometric couplings and brane supersymmetry breaking,” Nucl. Phys. B 615, 33 (2001) [hep-th/0107090].

    Article  MATH  MathSciNet  Google Scholar 

  53. S. Ferrara, R. Kallosh and A. Linde, “Cosmology with nilpotent superfields,” JHEP 1410, 143 (2014) [arXiv:1408.4096 [hep-th]].

    Article  MathSciNet  Google Scholar 

  54. R. Kallosh and A. Linde, “Inflation and uplifting with nilpotent superfields,” JCAP 1501 01, 025 (2015) [arXiv:1408.5950 [hep-th]].

    Article  MathSciNet  Google Scholar 

  55. R. Kallosh and T. Wrase, “Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua,” JHEP 1412, 117 (2014) [arXiv:1411.1121 [hep-th]]

    Article  Google Scholar 

  56. R. Kallosh, A. Linde and M. Scalisi, “Inflation, de Sitter landscape and super-Higgs effect,” JHEP 1503, 111 (2015) [arXiv:1411.5671 [hepth]]

    Article  MathSciNet  Google Scholar 

  57. E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, “D3 and dS,” JHEP 1505, 058 (2015) [arXiv:1502.07627 [hep-th]]

    Article  Google Scholar 

  58. M. Scalisi, “Cosmological a-attractors and de Sitter landscape,” arXiv:1506.01368 [hep-th]

  59. J. J. M. Carrasco, R. Kallosh and A. Linde, “a-attractors: Planck, LHC and dark energy,” arXiv:1506.01708 [hep-th].

  60. G. Dall’Agata and F. Zwirner, “On sgoldstino-less supergravity models of inflation,” JHEP 1412, 172 (2014) [arXiv:1411.2605 [hep-th]].

    Article  MathSciNet  Google Scholar 

  61. P. Aschieri, D. Brace, B. Morariu and B. Zumino, “Nonlinear selfduality in even dimensions,” Nucl. Phys. B 574, 551 (2000) [hep-th/9909021].

    Article  MATH  MathSciNet  Google Scholar 

  62. M. K. Gaillard and B. Zumino, “Duality rotations for interacting fields,” Nucl. Phys. B 193, 221 (1981).

    Article  MathSciNet  Google Scholar 

  63. P. Aschieri, S. Ferrara and B. Zumino, “Duality rotations in nonlinear electrodynamics and in extended supergravity,” Riv. Nuovo Cim. 31, 625 (2008) [arXiv:0807.4039 [hep-th]].

    Google Scholar 

  64. M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144, 425 (1934).

    Article  Google Scholar 

  65. S. Deser and R. Puzalowski, “Supersymmetric nonpolynomial vector multiplets and causal propagation,” J. Phys. A 13, 2501 (1980).

    Article  MathSciNet  Google Scholar 

  66. S. Cecotti and S. Ferrara, “Supersymmetric Born-Infeld Lagrangians,” Phys. Lett. B 187, 335 (1987).

    Article  MathSciNet  Google Scholar 

  67. S. M. Kuzenko and S. Theisen, “Supersymmetric duality rotations,” JHEP 0003, 034 (2000) [hepth/0001068]

    Article  MathSciNet  Google Scholar 

  68. S. M. Kuzenko and S. Theisen, “Nonlinear selfduality and supersymmetry,” Fortsch. Phys. 49, 273 (2001) [hep-th/0007231].

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Ferrara, M. Porrati and A. Sagnotti, “N = 2 Born-Infeld attractors,” JHEP 1412, 065 (2014) [arXiv:1411.4954 [hep-th]]

    Article  Google Scholar 

  70. S. Ferrara, M. Porrati, A. Sagnotti, R. Stora and A. Yeranyan, “Generalized Born-Infeld actions and projective cubic curves,” Fortsch. Phys. 63, 189 (2015) [arXiv:1412.3337 [hep-th]].

    Article  MathSciNet  Google Scholar 

  71. L. Andrianopoli, R. D’Auria and M. Trigiante, “On the dualization of BornTAYInfeld theories,” Phys. Lett. B 744, 225 (2015) [arXiv:1412.6786 [hep-th]].

    Article  MathSciNet  Google Scholar 

  72. N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994), [Erratum-ibid. B 430, 485 (1994)] [hepth/9407087].

    Article  MATH  MathSciNet  Google Scholar 

  73. A. Ceresole, R. D’Auria and S. Ferrara, “On the geometry of moduli space of vacua in N=2 supersymmetric Yang-Mills theory,” Phys. Lett. B 339, 71 (1994) [hep-th/9408036]

    Article  MathSciNet  Google Scholar 

  74. A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, “Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity,” Nucl. Phys. B 444, 92 (1995) [hep-th/9502072].

    Article  MATH  Google Scholar 

  75. S. Ferrara, A. Sagnotti and A. Yeranyan, “Doubly self-dual actions in various dimensions,” JHEP 1505, 051 (2015) [arXiv:1503.04731 [hep-th]].

    Article  MathSciNet  Google Scholar 

  76. D. V. Volkov and V. P. Akulov, “Is the neutrino a Goldstone particle?,” Phys. Lett. B 46, 109 (1973).

    Article  Google Scholar 

  77. P. Fayet and J. Iliopoulos, “Spontaneously broken supergauge symmetries and Goldstone spinors,” Phys. Lett. B 51, 461 (1974).

    Article  Google Scholar 

  78. S. Ferrara, R. Kallosh and A. Strominger, “N=2 extremal black holes,” Phys. Rev. D 52, 5412 (1995) [hepth/9508072]

    Article  MathSciNet  Google Scholar 

  79. S. Ferrara and R. Kallosh, “Supersymmetry and attractors,” Phys. Rev. D 54, 1514 (1996) [hep-th/9602136]

    Article  MATH  MathSciNet  Google Scholar 

  80. S. Ferrara, G. W. Gibbons and R. Kallosh, “Black holes and critical points in moduli space,” Nucl. Phys. B 500, 75 (1997) [hep-th/9702103].

    Article  MATH  MathSciNet  Google Scholar 

  81. B. de Wit, P. G. Lauwers and A. Van Proeyen, “Lagrangians of N=2 supergravity-matter systems,” Nucl. Phys. B 255, 569 (1985)

    Article  Google Scholar 

  82. S. Ferrara and A. Strominger, “N=2 space-time supersymmetry and Calabi- Yau moduli space,” Conf. Proc. C 8903131, 245 (1989)

    Google Scholar 

  83. A. Strominger, “Special geometry,” Commun. Math. Phys. 133, 163 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  84. L. Castellani, R. D’Auria and S. Ferrara, “Special geometry without special coordinates,” Class. Quant. Grav. 1767 7 (1990)

    MathSciNet  Google Scholar 

  85. A. Ceresole, R. D’Auria and S. Ferrara, “The symplectic structure of N=2 supergravity and its central extension,” Nucl. Phys. Proc. Suppl. 46, 67 (1996) [hepth/9509160]

    Article  MATH  MathSciNet  Google Scholar 

  86. B. de Wit and A. Van Proeyen, “Special geometry and symplectic transformations,” Nucl. Phys. Proc. Suppl. 45BC, 196 (1996) [hep-th/9510186].

    Article  MATH  Google Scholar 

  87. S. Ferrara and A. Sagnotti, “Massive Born-Infeld and other dual pairs,” JHEP 1504, 032 (2015) [arXiv:1502.01650 [hep-th]].

    Article  MathSciNet  Google Scholar 

  88. S. Ferrara and B. Zumino, “Transformation properties of the supercurrent,” Nucl. Phys. B 87, 207 (1975).

    Article  Google Scholar 

  89. P. K. Townsend, “P-brane democracy,” in M. J. Duff, (ed.), The World in Eleven Dimensions, pp. 375–389 (1995) [hep-th/9507048].

    Google Scholar 

  90. S. Ferrara and M. Porrati, “Central extensions of supersymmetry in four-dimensions and three-dimensions,” Phys. Lett. B 423, 255 (1998) [hep-th/9711116].

    Article  MathSciNet  Google Scholar 

  91. A. Salam and J. A. Strathdee, “On Goldstone fermions,” Phys. Lett. B 49, 465 (1974).

    Article  MathSciNet  Google Scholar 

  92. L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, “Observations on the partial breaking of N = 2 rigid supersymmetry,” Phys. Lett. B 744, 116 (2015) [arXiv:1501.07842 [hep-th]].

    Article  Google Scholar 

  93. J. Dieudonné, J. B. Carrell, Invariant Theory, Old and New, Adv. in Mathematics (Academic Press, Boston, MA, 1971)

    Google Scholar 

  94. D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, 3rd ed. (Springer-Verlag, Berlin, New York, 1994)

    Book  Google Scholar 

  95. I. M. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Springer Science & Business Media, 2008)

    MATH  Google Scholar 

  96. C. Procesi, Lie Groups. An Approach Through Invariants and Representations (Springer, New York, NY, 2007)

    MATH  Google Scholar 

  97. B. Sturmfels, Algorithms in Invariant Theory (Springer-Verlag, 2008)

    MATH  Google Scholar 

  98. G. B. Gurevich, Foundations of the Theory of Algebraic Invariants (P. Noordhoff, 1964)

    MATH  Google Scholar 

  99. J. Harris, Algebraic Geometry, a First Course, Graduate Texts in Mathematics 133 (Springer-Verlag, 2010)

    Google Scholar 

  100. J. G. Semple and L. Roth, Introduction to Algebraic Geometry (Oxford Univ. Press, 1987).

    Google Scholar 

  101. L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, “Small orbits,” Phys. Rev. D 85, 086002 (2012) [arXiv:1108.0424 [hep-th]].

    Article  Google Scholar 

  102. A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, “Universality of the superpotential for d = 4 extremal black holes,” Nucl. Phys. B 832, 358 (2010) [arXiv:0910.2697 [hep-th]].

    Article  MATH  MathSciNet  Google Scholar 

  103. S. Deser and B. Zumino, “Broken supersymmetry and supergravity,” Phys. Rev. Lett. 38, 1433 (1977).

    Article  Google Scholar 

  104. E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara and L. Girardello, “Super-Higgs effect in supergravity with general scalar interactions,” Phys. Lett. B 79, 231 (1978)

    Article  Google Scholar 

  105. E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara and L. Girardello, “Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant,” Nucl. Phys. B 147, 105 (1979).

    Article  Google Scholar 

  106. E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, “Naturally vanishing cosmological constant in N=1 supergravity,” Phys. Lett. B 133, 61 (1983)

    Article  MathSciNet  Google Scholar 

  107. J. R. Ellis, A. B. Lahanas, D. V. Nanopoulos and K. Tamvakis, “No-scale supersymmetric standard model,” Phys. Lett. B 134, 429 (1984).

    Article  Google Scholar 

  108. S. Cecotti, “Higher derivative supergravity is equivalent to standard supergravity coupled tomatter. 1.,” Phys. Lett. B 190, 86 (1987).

    Article  MathSciNet  Google Scholar 

  109. J. Ellis, D. V. Nanopoulos and K. A. Olive, “No-scale supergravity realization of the Starobinsky model of inflation,” Phys. Rev. Lett. 111, 111301 (2013), [Phys. Rev. Lett. 111, (12) 129902 (2013)] [arXiv:1305.1247 [hep-th]]

    Article  Google Scholar 

  110. J. Ellis, D. V. Nanopoulos and K. A. Olive, “Starobinsky-like inflationary models as avatars of noscale supergravity,” JCAP 1310, 009 (2013) [arXiv:1307.3537 [hep-th]].

    Article  Google Scholar 

  111. L. Alvarez-Gaume, C. Gomez and R. Jimenez, “Minimal inflation,” Phys. Lett. B 690, 68 (2010) [arXiv:1001.0010 [hep-th]]

    Article  Google Scholar 

  112. L. Alvarez-Gaume, C. Gomez and R. Jimenez, “A minimal inflation scenario,” JCAP 1103, 027 (2011) [arXiv:1101.4948 [hepth]].

    Article  Google Scholar 

  113. E. Dudas, N. Kitazawa and A. Sagnotti, “On climbing scalars in string theory,” Phys. Lett. B 694, 80 (2010) [arXiv:1009.0874 [hep-th]].

    Article  MathSciNet  Google Scholar 

  114. A. Sagnotti, “Brane SUSY breaking and inflation: implications for scalar fields and CMB distortion,” Phys. Part. Nucl. Lett. 11, 836 (2014) [arXiv:1303.6685 [hep-th]]

    Article  Google Scholar 

  115. P. Fré, A. Sagnotti and A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory,” Nucl. Phys. B 877, 1028 (2013) [arXiv:1307.1910 [hep-th]].

    Article  MATH  Google Scholar 

  116. S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68, 046005 (2003) [hep-th/0301240].

    Article  MathSciNet  Google Scholar 

  117. S. Ferrara and P. van Nieuwenhuizen, “Noether coupling of massive gravitinos to N = 1 supergravity,” Phys. Lett. B 127, 70 (1983).

    Article  Google Scholar 

  118. S. Deser, R. Jackiw and S. Templeton, “Topologically massive gauge theories,” Annals Phys. 140, 372 (1982), [Annals Phys. 185, 406 (1988)] [Annals Phys. 281, 409 (2000)]

    Article  MathSciNet  Google Scholar 

  119. S. Deser, R. Jackiw and S. Templeton, “Three-dimensional massive gauge theories,” Phys. Rev. Lett. 48, 975 (1982)

    Article  Google Scholar 

  120. P. K. Townsend, K. Pilch and P. van Nieuwenhuizen, “Selfduality in odd dimensions,” Phys. Lett. B 136, 38 (1984) [Phys. Lett. B 137, 443 (1984)]

    Article  MathSciNet  Google Scholar 

  121. S. Cecotti, S. Ferrara and L. Girardello, “Massive vector multiplets from superstrings,” Nucl. Phys. B 294, 537 (1987).

    Article  Google Scholar 

  122. S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, “New minimal higher derivative supergravity coupled to matter,” Nucl. Phys. B 306, 160 (1988).

    Article  MathSciNet  Google Scholar 

  123. S. Ferrara, R. Kallosh, A. Linde and M. Porrati, “Minimal supergravity models of inflation,” Phys. Rev. D 88 (8), 085038 (2013) [arXiv:1307.7696 [hep-th]].

    Article  Google Scholar 

  124. S. Bellucci, N. Kozyrev, S. Krivonos and A. Yeranyan, “Supermembrane in D = 5: component action,” JHEP 1405, 142 (2014) [arXiv:1312.0231 [hep-th]].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ferrara.

Additional information

The text was submitted by the authors in English.

Contribution to the Proceedings of “Group Theory, Probability, and the Structure of Spacetime”. A Conference on the occasion of Professor V. S. Varadarajan’s retirement, UCLA Mathematics Department, November 7–9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrara, S., Sagnotti, A. Some pathways in non-linear supersymmetry: Special geometry Born-Infeld’s, cosmology and dualities. P-Adic Num Ultrametr Anal Appl 7, 291–311 (2015). https://doi.org/10.1134/S2070046615040056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046615040056

Keywords

Navigation