Skip to main content
Log in

Twisted spectral triples and quantum statistical mechanical systems

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

Spectral triples and quantum statistical mechanical systems are two important constructions in noncommutative geometry. In particular, both lead to interesting reconstruction theorems for a broad range of geometric objects, including number fields, spin manifolds, graphs. There are similarities between the two structures, and we show that the notion of twisted spectral triple, introduced recently by Connes and Moscovici, provides a natural bridge between them. We investigate explicit examples, related to the Bost-Connes quantum statistical mechanical system and to Riemann surfaces and graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Akhoury and A. Comtet, “Anomalous behavior of the Witten index — exactly soluble models,” Nucl. Phys. B 246, 253–278 (1984).

    Article  MathSciNet  Google Scholar 

  2. J. B. Bost and A. Connes, “Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory,” Selecta Math. 1(3), 411–457 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, second ed., Texts and Monographs in Physics (Springer-Verlag, 1997).

  4. D. Buchholz and R. Longo, “Graded KMS-functionals and the breakdown of supersymmetry,” Adv. Theor. Math. Phys. 3(3), 615–626 (1999).

    MATH  MathSciNet  Google Scholar 

  5. B. Ćaćić, “A reconstruction theorem for almost-commutative spectral triples,” Lett. Math. Phys. 100(2), 181–202 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Cecotti and L. Girardello, “Functional measure, topology, and dynamical supersymmetry breaking,” Phys. Lett. B 110, 39–43 (1982).

    Article  MathSciNet  Google Scholar 

  7. A. Chamseddine and A. Connes, “The spectral action principle,” Comm. Math. Phys. 186(3), 731–750 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chamseddine, A. Connes and M. Marcolli, “Gravity and the standard model with neutrino mixing,” Adv. Theor. Math. Phys. 11, 991–1090 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Connes, “Compact metric spaces, Fredholm modules, and hyperfiniteness,” Ergod. Th. Dynam. Sys. 9, 207–220 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Connes, Noncommutative Geometry (Academic Press, 1994).

    MATH  Google Scholar 

  11. A. Connes, “Geometry from the spectral point of view,” Lett. Math. Phys. 34(3), 203–238 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Connes, “A unitary invariant in Riemannian geometry,” Int. J. Geom. Meth. Mod. Phys. 5(8), 1215–1242 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Connes, “On the spectral characterization of manifolds,” J. Noncomm. Geom. 7(1), 1–82 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Connes and M. Marcolli, “A walk in the noncommutative garden,” in An Invitation to Noncommutative Geometry, pp. 1–128 (World Scientific, 2008).

    Chapter  Google Scholar 

  15. A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications 55 (American Math. Society, 2008).

  16. A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication,” Selecta Math. (N.S.) 11(3–4), 325–347 (2005).

    MATH  MathSciNet  Google Scholar 

  17. A. Connes and H. Moscovici, “The local index formula in noncommutative geometry,” Geom. Funct. Anal. 5(2), 174–243 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Connes and H. Moscovici, “Type III and spectral triples,” in Traces in Number Theory, Geometry and Quantum Fields, pp. 57–71, Aspects Math. E 38 (Vieweg, 2008).

    MathSciNet  Google Scholar 

  19. M. Coornaert, “Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov,” Pacific J. Math. 159(2), 241–270 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Cornelissen and J. W. de Jong, “The spectral length of a map between Riemannian manifolds,” J. Noncomm. Geom. 6(4), 721–748 (2012).

    Article  MATH  Google Scholar 

  21. G. Cornelissen and M. Marcolli, “Zeta functions that hear the shape of a Riemann surface,” J. Geom. Phys. 58(1), 57–69 (2008).

    Google Scholar 

  22. G. Cornelissen and M. Marcolli, “Quantum statistical mechanics, L-series and anabelian geometry,” [arXiv:1009.0736].

  23. G. Cornelissen and M. Marcolli, “Graph reconstruction and quantum statistical mechanics,” to appear in J. Geom. Phys. [arXiv:1209.5783].

  24. P. B. Gilkey, Asymptotic Formulae in Spectral Geometry, Studies in Advanced Mathematics (Chapman Hall/CRC, 2004).

    MATH  Google Scholar 

  25. E. Ha and F. Paugam, “Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties,” IMRP Int. Math. Res. Pap. 5, 237–286 (2005).

    Article  MathSciNet  Google Scholar 

  26. N. Higson and J. Roe, Analytic K-Homology (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  27. A. Jaffe, “Mathematics motivated by physics,” in The Legacy of John von Neumann (Hempstead, NY, 1988), pp. 137–150, Proc. Sympos. Pure Math. 50 (Amer. Math. Soc., Providence, RI, 1990).

    Google Scholar 

  28. J. W. de Jong, “Graphs, spectral triples and Dirac zeta functions,” p-Adic Numbers Ultrametric Anal. Appl. 1(4), 286–296 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  29. B. Julia, “Statistical theory of numbers,” in Number Theory and Physics (Springer, 1990).

    Google Scholar 

  30. D. Kastler, “Cyclic cocycles from graded KMS functionals,” Commun. Math. Phys. 121, 345–350 (1989).

    Article  MathSciNet  Google Scholar 

  31. T. Kimura, S. Koyama and N. Kurokawa, “Euler products beyond the boundary,” [arXiv:1210.1216].

  32. M. Laca and I. Raeburn, “A semigroup crossed product arising in number theory,” J. London Math. Soc. (2) 59(1), 330–344 (1999).

    Article  MathSciNet  Google Scholar 

  33. M. Laca, N. Larsen and S. Neshveyev, “On Bost-Connes types systems for number fields,” J. Number Theory 129(2), 325–338 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Lord, A. Rennie and J. C. Varilly, “Riemannian manifolds in noncommutative geometry,” J. Geom. Phys. 62(7), 1611–1638 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Lott, “Limit sets as examples in noncommutative geometry,” K-Theory 34(4), 283–326 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  36. S. J. Patterson, “The limit set of a Fuchsian group,” Acta Math. 136(3–4), 241–273 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  37. M. A. Rieffel, “Compact quantum metric spaces,” in Operator Algebras, Quantization, and Noncommutative Geometry, Contemp. Math. 365, pp. 315–330 (Amer. Math. Soc., 2004).

    Article  MathSciNet  Google Scholar 

  38. D. Spector, “Supersymmetry and the Möbius inversion function,” Commun. Math. Phys. 127, 239–252 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Spector, “Duality, partial supsersymmetry, and arithmetic number theory,” J. Math. Phys. 39(4), 1919–1927 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  40. O. Stoytchev, “The modular group and super-KMS functionals,” Lett. Math. Phys. 27, 43–50 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions,” Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979).

    Article  MATH  Google Scholar 

  42. E. Witten, “Constraints on supersymmetry breaking,” Nucl. Phys. B 202, 253–316 (1982).

    Article  MathSciNet  Google Scholar 

  43. B. Yalkinoglu, “On arithmetic models and functoriality of Bost-Connes systems” [arXiv:1105.5022].

  44. D. Zhang, “Projective Dirac operators, twisted K-theory and local index formula,” to appear in J. Noncomm. Geom. [arXiv:1008.0707].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Greenfield.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenfield, M., Marcolli, M. & Teh, K. Twisted spectral triples and quantum statistical mechanical systems. P-Adic Num Ultrametr Anal Appl 6, 81–104 (2014). https://doi.org/10.1134/S2070046614020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046614020010

Key words

Navigation