Skip to main content
Log in

Diversity and Long-Term Dynamics of the Primeval Middle Taiga Forest

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

In light of the problem of maintaining the resilience of terrestrial ecosystems in the face of a changing climate, it is especially important to understand the mechanisms for maintaining biodiversity in intact forests that have not been harvested. The aim of this study is the synthesis of comprehensive long-term studies of the structural–functional diversity and dynamics of the Vepssky Forest, a primeval middle taiga woodland. The objectives include an analysis of (1) the natural disturbances regime; (2) the proportion of biogeocenoses (BGC) with various dynamics types associated with different site conditions, as well as windfall gaps; (3) the age structure of the forest massif; (4) the species composition dynamics, growing stock, number of trees, coarse woody debris (CWD), as well as natural regeneration and mortality of forest stands within the forest massif, on the levels of the whole massif and in different BGC types; and (5) the factors that determine the spatiotemporal organization the studied forest massif. Fulfilling these objectives is possible only within the framework of an integrated approach. We used data from aerial photography, inventories on transects, route surveys, mapping of the forest composition and age structure, and sites conditions and soils, as well as regularly established permanent circular sample plots of a fixed radius. The frequency and intensity of winds determines the structural diversity and dynamics of the studied forest massif. In turn, the diversity of the forest massif determines the severity of wind disturbances, as well as the patterns and rate of post-disturbance successional changes. Spruce forests prevailing in well-drained sites are subject to windthrows of medium and high severity—19% of their total area are windfall gaps. The most part of them (43%) has a relatively uneven age structure with a predominance of the 161–200 year old trees. The forest stands, which have an all-aged structure (15%), are confined to poorly drained sites. Mean growing of the forest massif has decreased by 15% (from 321 to 274 m3 ha-1) from 1991 to 2019 as a result of windthrows. The volume of CWD, represented mainly by fallen and leaning logs, averaged 71% of the volume of living trees. Its variations reflected the phases of forest stand dynamics due to wind induced disturbances. The number of BGC in the stabilization phase has decreased, while the proportion of BGC in the digression and growing stock increase phases of dynamics has increased. The “top story” mortality prevails; i.e., mainly larger trees die off. The mean annual mortality at the time of the last inventory was 3.5% of the total growing stock. The spruce share in the forest stands remains quite stable. The results of many years of research in the Vepssky Forest have many practical implications, including the development of optimal scenarios for forest management, as well as for the conservation and/or restoration of biodiversity in managed forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Attiwill, P.M., The disturbance of forest ecosystems: the ecological basis for conservative management, For. Ecol. Manage., 1994, vol. 63, nos. 2–3, pp. 247–300.

    Article  Google Scholar 

  2. Bauhus, J., Puettmann, K., and Messier, C., Silviculture for old-growth attributes, For. Ecol. Manage., 2009, vol. 258, no. 4, pp. 525–537.

    Article  Google Scholar 

  3. Bekmansurov, M.V., Bobrovsky, M.V., Braslavskaya, T.Yu., Evstigneev, O.I., Zaugolnova, L.B., Korotkov, V.N., Kalutskova, N.N., Leonova, N.A., Likhatsky, Yu.P., Makarova, V.A., and Morozova, A.S., Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost’ (Eastern European Forest in the Holocene and Modern History), Moscow: Nauka, 2004, vol. 2.

    Google Scholar 

  4. Berezin, G.V., Shorohova, E.V., Shorohov, A.A., Kapitsa, E.A., and Korepin, A.A., Natural regeneration of European spruce in the primary forests of the Baltic-Belozersky taiga region, Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsiiLesa rossii: politika, promyshlennost', nauka, obrazovanie” (Proc. All-Russ. Sci.-Tech. Conf. “Forests of Russia: Politics, Industry, Science, Education”), St. Petersburg: Politekh-Press, 2020, pp. 36–38.

  5. Burton, P.J., Kneeshaw, D.D., and Coates, K.D., Managing forest harvesting to maintain old growth in boreal and sub-boreal forests, For. Chron., 1999, vol. 75, no. 4, pp. 623–631.

    Article  Google Scholar 

  6. Chambers, J.Q., Negron-Juarez, R.I., Marra, D.M., Di Vittorio, A., Tews, J., Roberts, D., Ribeiro, G.H., Trumbore, S.E., and Higuchi, N., The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 10, pp. 3949–3954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Grandpré, L., Waldron, K., Bouchard, M., Gauthier, S., Beaudet, M., Ruel, J.C., Hébert, C., and Kneeshaw, D.D., Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest, Forests, 2018, vol. 9, no. 8, p. 471.

    Article  Google Scholar 

  8. Dyrenkov, S.A., Struktura i dinamika taezhnykh el’nikov (Structure and Dynamics of the Boreal Spruce Forest), Leningrad: Nauka, 1984.

  9. Everham, E.M. and Brokaw, N.V.L., Forest damage and recovery from catastrophic wind, Bot. Rev., 1996, vol. 62, no. 2, pp. 113–185.

    Article  Google Scholar 

  10. Fedorchuk, V.N., Kuznetsova, M.L., Andreeva, A.A., and Moiseev, D.V., Rezervat “Vepsskii les”. Lesovodstvennye issledovaniya (Vepssky Forest Reserve. Forestry Studies), Saint-Petersburg: S.-Peterb. Nauchno-Issled. Inst. Lesn. Khoz., 1998.

  11. Fedorchuk, V.N., Shorohov, A.A., and Grigor’eva, S.O., Protection and study of native spruce forests of the Leningrad region, Lesovedenie, 2002, no. 6, pp. 23–28.

  12. Fedorchuk, V.N., Shorohova, E.V., Shorohov, A.A., and Kuznetsova, M.L., Age dynamics of spruce stands in Northwestern Russian Plain, Lesovedenie, 2011, no. 3, pp. 3–13.

  13. Fedorchuk, V.N., Shorohov, A.A., Shorohova, E.V., Kuznetsova, M.L., and Tetyukhin, S.V., Massivy korennykh elovykh lesov: struktura, dinamika, ustoichivost' (Primeval Spruce Woodlands: Structure, Dynamics, Resilience), Saint-Petersburg: Politekh. Univ., 2012.

  14. Fedorchuk, V.N., Shorohov, A.A., Shorohova, E.V., and Kuznetsova, M.L., Dynamics of pristine spruce forests of European part of Russia, Lesovedenie, 2014, no. 2, pp. 11–19.

  15. Frelich, L.E. and Reich, P.B., Perspectives on development of definitions and values related to old-growth forests, Environ. Rev., 2003, vol. 11, no. 1, pp. S9–S22.

    Article  Google Scholar 

  16. Gauthier, S., Vaillancourt, M.A., Kneeshaw, D.D., Drapeau, P., Grandpré, L., Claveau, Y., and Paré, D., Forest ecosystem management: origins and foundations, in Ecosystem Management in the Boreal Forest, Quebec: Presses de l’Université du Québec, 2009, pp. 13–18.

    Google Scholar 

  17. Gauthier, S., Leduc, A., Bergeron, Y., Kuuluvainen, T., Vaillancourt, M.A., Montoro Girona, M., Macdonald, E., Bélilse, A.C., Shorohova, E., and Shvidenko, A., The boreal forests in the face of global change: Is ecosystem management still part of the solution?, in Sustainable Forest Management of the Boreal Forests in the Face of Climate Change, Springer-Verlag, 2021 (in press).

    Google Scholar 

  18. Georgievskii, A.B., The phase of gaps in the canopy of the primary spruse forests of southern taiga, Bot. Zh., 1992, vol. 77, no. 6, pp. 52–62.

    Google Scholar 

  19. Girard, F., De Grandpré, L., and Ruel, J.C., Partial windthrow as a driving process of forest dynamics in old-growth boreal forests, Can. J. For. Res., 2014, vol. 44, no. 10, pp. 1165–1176.

    Article  Google Scholar 

  20. Girard, F., De Grandpré, L., and Ruel, J.C., Partial windthrow as a driving process of forest dynamics in old-growth boreal forests, Can. J. For. Res., 2014, vol. 44, no. 10, pp. 1165–1176.

    Article  Google Scholar 

  21. Gromtsev, A.N., Dynamics of intact forests in taiga of European part of Russia under natural disturbance, III Vserossiiskaya shkola-konferentsiya “Aktual’nye problemy geobotaniki” (III All-Russ. School-Conf. “Urgent Challenges of Geobotany”), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2007, pp. 283–301.

    Google Scholar 

  22. Halme, P., Allen, K.A., Auniņš, A., Bradshaw, R.H.W., Brumelis, G., Čada, V., Clear, J.L., Eriksson, A.M., Hannon, G., Hyvärinen, E., et al., Challenges of ecological restoration: Lessons from forests in northern Europe, Biol. Conserv., 2013, vol. 167, pp. 248–256.

    Article  Google Scholar 

  23. Koivula, M., Kuuluvainen, T., Hallman, E., Kouki, J., Siitonen, J., and Valkonen, S., Forest management inspired by natural disturbance dynamics (DISTDYN) – a long-term research and development project in Finland, Scand. J. For. Res., 2014, vol. 29, pp. 579–592.

    Article  Google Scholar 

  24. Korepin A.A., Shorohov A.A., Shorohova A.A., Analysis of the long-term dynamics of the massif of primary forests of the reference value of the Baltic-Belozersky taiga region, VIII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Lesa Rossii: politika, promyshlennost’, nauka, obrazovanie” (Proc. VIII All-Russ. Sci.-Tech. Conf. “Forests of Russia: Politics, Industry, Science, Education”), St. Petersburg: Politekh-Press, pp. 147–150.

  25. Korotkov, V.N., A new paradigm in forest ecology, Biol. Nauki, 1991, vol. 8, no. 8, pp. 7–20.

    Google Scholar 

  26. Král, K., McMahon, S.M., Janík, D., Adam, D., and Vrška, T., Patch mosaic of developmental stages in central European natural forests along vegetation gradient, For. Ecol. Manage., 2014, vol. 330, pp. 17–28.

    Article  Google Scholar 

  27. Kryshen’, A.M., Sin’kevich, S.M., and Shorohova, E.V., Variable retention forestry is targeted to preserve the temporal and spatial continuity of forest habitats and ecosystem functions, Rastit. Resur., 2020, vol. 56, no. 3, pp. 1–7.

    Google Scholar 

  28. Kuuluvainen, T., Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia, Silva Fenn., 2002, vol. 36, no. 1, pp. 97–125.

    Article  Google Scholar 

  29. Kuuluvainen, T. and Aakala, T., Natural forest dynamics in boreal Fennoscandia: a review and classification, Silva Fenn., 2011, vol. 45, no. 5, pp. 823–841.

    Article  Google Scholar 

  30. Kuuluvainen, T., Tahvonen, O., and Aakala, T., Even-aged and uneven-aged forest management in Boreal Fennoskandia: A review, Ambio, 2012, vol. 41, no. 7, pp. 720–737.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leibundgut, H., Europäische Urwälder der Bergstufe, Bern: Verlag Paul Haupt, 1982.

    Google Scholar 

  32. Lukina, N.V., Geras’kina, A.P., Gornov, A.V., Shevchenko, N.E., Kuprin, A.V., Chernov, T.I., Chumachenko, S.I., Shanin, V.N., Kuznetsova, A.I., Teben’kova, D.N., and Gornova, M.V., Biodiversity and climate regulating functions of forests: current issues and prospects for research, Vopr. Lesn. Nauki, 2020, vol. 3, no. 4, pp. 1‒90.

    Google Scholar 

  33. Manabe, T., Shimatani, K., Kawarasaki, S., Aikawa, S.I., and Yamamoto, S.I., The patch mosaic of an old-growth warm-temperate forest: patch-level descriptions of 40-year gap-forming processes and community structures, Ecol. Res., 2009, vol. 24, no. 3, pp. 575–586.

    Article  Google Scholar 

  34. Martin, M., Fenton, N.J., and Morin, H., Structural diversity and dynamics of boreal old-growth forests case study in Eastern Canada, For. Ecol. Manage., 2018, vol. 422, pp. 125–136.

    Article  Google Scholar 

  35. Martin, M., Boucher, Y., Fenton, N.J., Marchand, P., and Morin, H., Forest management has reduced the structural diversity of residual boreal old-growth forest landscapes in Eastern Canada, For. Ecol. Manage., 2020, vol. 458, pp. 1–10.

    Article  Google Scholar 

  36. Martin, M., Girona, M.M., and Morin, H., Driving factors of conifer regeneration dynamics in eastern Canadian boreal old-growth forests, PLoS One, 2020, vol. 15, no. 7, p. e0230221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin, M., Shorohova, E., and Fenton, N.J., Boreal old-growth forests are ecosystems of exceptional ecological and social value, in Sustainable Forest Management of the Boreal Forests in the Face of Climate Change, Springer-Verlag, 2021 (in press).

    Google Scholar 

  38. Maslov, A.A., Kolichestvennyi analiz gorizontal’noi struktury lesnykh soobshchestv (Quantitative Analysis of Horizontal Structure of Forest Communities), Moscow: Nauka, 1990.

  39. Mazing, V.V., Structure, composition and dynamics of boreal plant communities, Uch. Zap. Tartuskogo Univ., 1988, no. 812, pp. 122-141.

  40. McCarthy, J., Gap dynamics of forest trees: a review with particular attention to boreal forests, Environ. Rev., 2001, vol. 9, no. 1, pp. 1–59.

    Article  Google Scholar 

  41. Meigs, G.W., Morrissey, R.C., Bače, R., Chaskovskyy, O., Čada, V., Després, T., Donato, D.C., Janda, P., Lábusová, J., Seedre, M., et al., More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways, For. Ecol. Manage., 2017, vol. 406, pp. 410–426.

    Article  Google Scholar 

  42. Messier, C., Puettmann, K., and Coates, D.J., Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change, London, 2013.

  43. Morozov, G.F., Uchenie o lese (The Doctrine of the Forest), Moscow-Leningrad, 1930.

  44. Pickett, S.T.A. and White, P., The Ecology of Natural Disturbance and Patch Dynamics, Orlando: Academic, 1985.

    Google Scholar 

  45. Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., Minnemeyer, S., et al., The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013, Sci. Adv., 2017, vol. 3, no. 1, pp. 1–14.

    Article  Google Scholar 

  46. Puettmann, K.J., Coates, K.D., and Messier, C., A Critique of Silviculture: Managing for Complexity, Washington D.C.: Island Press, 2009.

    Google Scholar 

  47. Pugachevskii, A.V., Tsenopopulyatsii eli: struktura, dinamika, faktory regulyatsii (Spruce Coenopopulations: Structure, Dynamics, Regulatory Factors), Minsk: Nauka Tekh., 1992.

  48. Pugachevskii, A.V., Assessment of environmental risks in the forestry information support system, on Botanika (issledovaniya) (Botany (Research), Minsk: Inst. Eksp. Bot. Nats. Akad. Nauk Belarusi, 2013, no. 42, pp. 243–258.

  49. Ruel, J.C., Factors influencing windthrow in balsam fir forests: from landscape studies to individual tree studies, For. Ecol. Manage., 2000, vol. 135, pp. 169–178.

    Article  Google Scholar 

  50. Saad, C., Boulanger, Y., Beaudet, M., Gachon, P., Ruel, J.C., and Gauthier, S., Potential impact of climate change on the risk of windthrow in eastern Canada’s forests, Clim. Change, 2017, vol. 143, pp. 487–501.

    Article  Google Scholar 

  51. Shorohova, E., Fedorchuk, V.N., Kuznetsova, M.L., and Shvedova, O., Wind-induced successional changes in pristine boreal Picea abies forest stands: evidence from long-term permanent plot records, Forestry, 2008, vol. 81, pp. 335–359.

    Article  Google Scholar 

  52. Shorohova, E., Kuuluvainen, T., Kangur, A., and Jõgiste, K., Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies, Ann. For. Sci., 2009, vol. 66, no. 2, pp. 1–20.

    Article  Google Scholar 

  53. Shorohova, E., Kneeshaw, D., Kuuluvainen, T., and Gauthier, S., Variability and dynamics of old-growth forests in the circumboreal zone: implications for conservation, restoration and management, Silva Fenn., 2011, vol. 45, no. 5, pp. 785–806.

    Article  Google Scholar 

  54. Shorohova, M.A., Berezin, G.V., Kapitsa, E.A., and Shorohova, E.V., Characteristics of coarse woody debris in the “Vepssky Forest” reserve, a reference of primeval middle boreal forests, Izv. S.-Peterb. Lesotekh. Akad., 2021, no. 236, pp. 198–211.

  55. Shorohova, E., Aakala, T., Gauthier, S., Kneeshaw, D., Koivula, M., Ruel, J.C., and Ulanova, N., Natural Disturbances from the Perspective of Forest Ecosystem-based Management, in Sustainable Forest Management of the Boreal Forests in the Face of Climate Change, Springer-Verlag, 2021 (in press).

    Google Scholar 

  56. Skvortsova, E.B., Ulanova, N.G., and Basevich, V.F., Ekologicheskaya rol' vetrovalov (Ecological Role of Windthrows), Moscow: Lesn. Prom-st., 1983.

  57. Smolonogov, E.P., Forest formation process and windblows, in Posledstviya katastroficheskogo vetrovala dlya lesnykh ekosistem (Consequences of a Catastrophic Windblow for Forest Ecosystems), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000, pp. 12–18.

  58. Spies, T.A. and Turner, M.A., Dynamic forest mosaics, in Maintaining Biodiversity in Forest Ecosystem, Malcolm, L. and Hunter, J., Eds., Cambridge Univ. Press., 1999, pp. 95–160.

    Google Scholar 

  59. Sukachev, V.N. and Dylis, N.V., Osnovy lesnoi biogeotsenologii (Fundamentals of Forest Biogeocoenology), Moscow: Nauka, 1964.

  60. Suktsessionnye protsessy v zapovednikakh Rossii i problemy sokhraneniya biologicheskogo raznoobraziya (Succession Processes in Russian Nature Reserves: Challenges in Biodiversity Conservation), St. Petersburg: Russ. Bot. Obshch., 1999.

  61. Synek, M., Janda, P., Mikolas, M., Nagel, T.A., Schurman, J.S., Pettit, J.L., Trotsiuk, V., Morrissey, R.C., Bace, R., Cada, V., Brang, P., Bugmann, H., Begovic, K., Chaskovskyy, O., Dusatko, M., Frankovic, M., Kameniar, O., Knir, T., Kozak, D., Langbehn, T., Malek, J., Rodrigo, R., Saulnier, M., Teodosiu, M., Vostarek, O., and Svoboda, M., Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains, For. Ecol. Manage., 2020, vol. 457, p. 117734.

    Article  Google Scholar 

  62. Trotsiuk, V., Svoboda, M., Janda, P., Mikolas, M., Bace, R., Rejzek, J., Samonil, P., Chaskovskyy, O., Korol, M., and Myklush, S., A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians, For. Ecol. Manage., 2014, vol. 334, pp. 144–153.

    Article  Google Scholar 

  63. Ulanova, N.G., The effects of windthrow on forests at different spatial scales: a review, For. Ecol. Manage., 2000, vol. 135, pp. 155–168.

    Article  Google Scholar 

  64. Ustoichivost’ lesov. Teoriya i praktika biogeotsenoticheskikh issledovanii (Sustainability of Forests. Theory and Practice of Biogeocoenotic Studies), Moscow: KMK, 2018.

  65. Venier, L.A., Walton, R., Thompson, I.D., Arsenault, A., and Titus, B.D., A review of the intact forest landscape concept in the Canadian boreal forest: its history, value, and measurement, Environ. Rev., 2018, vol. 26, no. 4, pp. 369–377.

    Article  Google Scholar 

  66. Waldron, K., Ruel, J.C., and Gauthier, S., The effects of site characteristics on the landscape-level windthrow regime in the North Shore region of Quebec, Canada, Forestry, 2013, vol. 86, no. 2, pp. 159-171.

    Article  Google Scholar 

  67. Watson, J.E.M., Evans, T., Venter, O., Williams, B., T-ulloch, A., Stewart, C., Thompson, I., Ray, J.C., Murray, K., Salazar, A., et al., The exceptional value of intact forest ecosystems, Nat. Ecol. Evol., 2018, vol. 2, no. 4, pp. 599–610.

    Article  PubMed  Google Scholar 

  68. Weldon, J. and Grandin, U., Major disturbances test resilience at a long-term boreal forest monitoring site, Ecol. Evol., 2019, vol. 9, no. 7, pp. 4275–4288.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yurtsev, B.A., Ecological and geographical structure of biological diversity and the strategy of its accounting and protection, in Biologicheskoe raznoobrazie: podkhody k izucheniyu i sokhraneniyu (Biological Diversity: Approaches to the Study and Conservation), St. Petersburg, 1992, pp. 7–21.

Download references

ACKNOWLEDGMENTS

We thank one of the founders of research on the territory of the Vepssky Forest, V.N. Fedorchuk, for ideological guidance and inspiration, as well as all colleagues who took part in field and organizational work, especially A.A. Schwartz, M.L. Kuznetsova, G.V. Filippov, A.A. Gladyshev, I.P. Kogotko, D.M. Dokuchaev, A.M. Ivanov, and L.A. Pegov.

Funding

The study was carried out with financial support from the Russian Science Foundation, 22-26-00177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shorohova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorohova, E.V., Korepin, A.A., Kapitsa, E.A. et al. Diversity and Long-Term Dynamics of the Primeval Middle Taiga Forest. Contemp. Probl. Ecol. 16, 939–950 (2023). https://doi.org/10.1134/S1995425523070107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523070107

Keywords:

Navigation