Skip to main content
Log in

Some patterns of spatial-ontogenetic structure in populations of tuber orchids

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Population dynamics, density, and aggregation size of tuberoid orchids have been identified based on mapping, electronic maps constructed with “point processes,” and Ripley function and pair-correlation function. Discrete and discrete-continuous types of spatial structure dominate in populations in optimal ecological conditions. The bounded aggregations of levels I (radius 0.45–0.75 m) and II (radius 1.2–2.5 m) are formed at 3 to 7.5 m2. The spatial pattern depends on generative specimens which are related with the “group effect.” The microloci have full ontogenetic structure and may be regarded as elemental populations. They form larger aggregations of levels III and IV with random spatial distribution and continuous bounds. Aggregations of higher level are not formed under worse ecological conditions. Random spatial distribution and incomplete ontogenetic spectrum of microloci are indicators of critical population status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baddeley, A., Turner, R., and van Lieshout, M.C., SPATSTAT: Spatial Point Pattern analysis, model-fitting, and simulation, R package version 1, 2005. http://www.spatstat.org/spatstat.

    Google Scholar 

  • Blinova, I.V., The populations of orchids at the northern border of their distribution in Europe (Murmansk oblast): the impact of climate, Ekologiya, 2008, vol. 39, no. 1, pp. 28–35.

    Google Scholar 

  • Blinova, I.V., Features of the morphological structure and the formation of shoots of a number of orchids on the northern limit of distribution, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1996, vol. 101, no. 5, pp. 69–80.

    Google Scholar 

  • Brzosko, E., Dynamics of island populations of Platanthera bifolia in the Biebrza National Park (NE Poland), Ann. Bot. Fen., 2002, vol. 40, pp. 243–253.

    Google Scholar 

  • Burgeff, H., Saprophytismus und Symbiose: Stubien an Tropischen Orchideen, Jena: Fischer, 1932.

    Google Scholar 

  • Czarnecka, B., Spatiotemporal patterns of genets and ramets in a population of clonal perennial Senecio rivularis: plant features and habitat effects, Ann. Bot. Fen., 2008, vol. 45, pp. 19–32.

    Article  Google Scholar 

  • Dodd, M., Anacamptis morio population variability in time and space, Mater. IX mezhd. nauch. konf. “Okhrana i kul’tivirovanie orkhidei,” Sankt-Petersburg, 2011 (Proc. IX Int. Sci. Conf. “Protection and Cultivation of Orchids,” St. Petersburg, 2011), Moscow: KMK, 2011, pp. 148–153.

    Google Scholar 

  • Dressler, R.L., The Orchids. Natural History and Classification, Cambridge, MA: Harvard Univ. Press, 1981.

    Google Scholar 

  • Fardeeva, M.B., Chizhikova, N.A., Biryuchevskaya, N.V., Rogova, T.V., and Savel’ev, A.A., Mathematical approaches to the analysis of the spatial-age structures of tussock herb species, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 233–240.

    Article  Google Scholar 

  • Fardeeva, M.B., Chizhikova, N.A., and Rogova, T.V., RF Inventor’s Certificate no. 2013620622, 2013.

  • Frei, T.E., Mathematical-phytocenotic classification of the plants, Extended Abstract of Doctoral (Biol.) Dissertation, Tartu, 1967.

    Google Scholar 

  • Galiano, E.F., Pattern detection in plant populations through the analysis of plant-to-all-plants distances, Vegetatio, 1982, no. 49, pp. 39–43.

    Article  Google Scholar 

  • Greig-Smith, P., The use of pattern analysis in ecological investigations, The IXInt. Botanical Congr. “Recent advances in botany,” Montreal, Toronto: Univ. of Toronto Press, 1961, pp. 1354–1358.

    Google Scholar 

  • Haase, P., Spatial pattern analysis in ecology based on Ripley’s function: introduction and methods of edge correction, J. Veg. Sci., 1995, no. 6, pp. 575–582.

    Article  Google Scholar 

  • Lyubarskii, E.L., Tsenopopulyatsiya i fitotsenoz (Cenopopulation and Phytocenosis), Kazan: Kazan. Gos. Univ., 1976.

    Google Scholar 

  • Naveh, Z. and Lieberman, A.S. Landscape Ecology: Theory and Application, New York: Springer-Verlag, 1984.

    Google Scholar 

  • Pélissier, R. and Goreaud, F., A practical approach to the study pf spatial structure in simple cases of heterogeneous vegetation, J. Veg. Sci., 2001, no. 12, pp. 99–108.

    Article  Google Scholar 

  • Raunkiaer, C., The Life Forms of Plants and Statistical Plant Geography, Oxford: Clarendon, 1934.

    Google Scholar 

  • R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna R: Found. Stat. Comput., 2006. ISBN 3-900051

  • Ripley, B.D., Modeling spatial patterns, J. R. Stat. Soc., B. 1977, vol. 39, pp. 172–212.

    Google Scholar 

  • Smirnova, E.S., Morfologiya pobegovykh system orkhidnykh (Morphology of the Shooting Systems of Orchids), Moscow: Nauka, 1990.

    Google Scholar 

  • Smirnova, O.V., Zaugol’nova, L.B., Toropova, N.A., and Falikov, L.D., Selection criteria of age states and specific ontogenesis of the plants with different biomorphs, in Tsenopopulyatsii rastenii (Osnovnye ponyatiya i struktura) (Cenopopulations of the Plants: General Terms and Structure), Moscow: Nauka, 1976, pp. 14–44.

    Google Scholar 

  • Smirnova, O.V., The theories of biogeocenology and population biology, in Vostochno-evropeiskie lesa (Istoriya v golotsene i sovremennost’) (East European Forests: History in Holocene and Present), Moscow: Nauka, 2004, pp. 16–22.

    Google Scholar 

  • Sochava, V.B., Rastitel’nyi pokrov na tematicheskikh kartakh (Vegetation Cover on Thematic Maps), Novosibirsk: Nauka, 1979.

    Google Scholar 

  • Soule, M.E., Conservation biology and the “real world,” in Conservation Biology: Science of Scarcity and Diversity, Soule, M.E., Ed., Sunderland, WA: Sinauer, 1986, pp. 1–12.

    Google Scholar 

  • Tatarenko, I.V., Orkhidnye Rossii: zhiznennye formy, biologiya, voprosy okhrany (Orchids of Russia: Life Forms, Biology, and Protection), Moscow: Argus, 1996.

    Google Scholar 

  • Tatarenko, I.V., Biomorphology of orchids (Orchidaceae Juss.) of Russia and Japan, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2007.

    Google Scholar 

  • The Mosaic Cycle Concept of Ecosystem, Remmert, H., Ed., New York: Springer-Verlag, 1991.

  • Vakhrameeva, M.G., Tatarenko, I.V., Varlygina, T.I., Torosyan, G.K. and Zagulskii, M.N. Orchids of Russia and Adjacent Countries (within the Borders of Former USSR), Ruggell: A.R.G. Gantner Verlag, 2008.

    Google Scholar 

  • Vakhrameeva, M.G., Varlygina, T.I., Tatarenko, I.V., Litvinskaya, S.A., Zagul’nyi, M.N., and Blinova, I.V., The species of Eurasian orchids affected by anthropogenic impact and their protection, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1997, vol. 102, no. 4, pp. 35–43.

    Google Scholar 

  • Vasilevich, V.I., Statisticheskie metody v geobotanike (Statistical Analysis in Geobotany), Leningrad: Nauka, 1969.

    Google Scholar 

  • Whitteker, R.H. and Lewin, A.S., The role of mosaic phenomena in natural communities, Theor. Pop. Biol., 1977, vol. 12, no. 2, pp. 117–139.

    Article  Google Scholar 

  • Wiegand, T., Gunatilleke, S., Gunatilleke, N., and Okuda, T., Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering, SRI Ecol., 2007, vol. 88, no. 12, pp. 3088–3102.

    Article  Google Scholar 

  • Wiegand, T. and Moloney, K.A., Rings,circles,and nullmodels for point pattern analysis in ecology, Oikos, 2004, no. 104, pp. 209–229.

    Article  Google Scholar 

  • Zaugol’nova, L.B., Population structure of seed plants and their monitoring, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 1994.

    Google Scholar 

  • Zhmylev, P.Yu., Alekseev, Yu.E., Karpukhina, E.A., and Balandin, S.A., Biomorfologiya rastenii (illyustrirovannyi slovar’) (Biomorphology of the Plants: Illustrated Dictionary), Moscow: Grif i K, 2005, 2nd ed.

    Google Scholar 

  • Zhukova, L.A., Akshentsev, E.V., Shivtsova, I.V., and Golovenkina, I.A., The spatial structure of plants of different life forms, Mater. 2-oi Vseross. nauch. konf. “Printsipy i sposoby sokhraneniya bioraznoobraziya” (Proc. Second All-Russ. Sci. Conf. “Principles and Methods of Biodiversity Conservation”), Yoshkar-Ola, 2006, pp. 248–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Fardeeva.

Additional information

Original Russian Text © M.B. Fardeeva, 2016, published in Sibirskii Ekologicheskii Zhurnal, 2016, No. 5, pp. 761–773.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fardeeva, M.B. Some patterns of spatial-ontogenetic structure in populations of tuber orchids. Contemp. Probl. Ecol. 9, 626–635 (2016). https://doi.org/10.1134/S199542551605005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542551605005X

Keywords

Navigation