Skip to main content
Log in

Sensitivity of Functionals of Solution to a Variational Data Assimilation Problem with Simultaneous Reconstruction of Heat Fluxes and Initial State for a Sea Thermodynamics Model

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

ABSTRACT

A problem of variational assimilation of data is considered in order to simultaneously reconstruct sea surface heat fluxes and the initial state of a mathematical model of sea thermodynamics developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences. The sensitivity of some solution functionals to observation data in the variational assimilation problem is investigated, and results of numerical experiments with the model applied to Baltic Sea dynamics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Marchuk, G.I., Adjoint Equations and Analysis of Complex Systems, Dordrecht: Kluwer, 1995.

  2. Lions, J.L., Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Paris: Dunod, 1968.

  3. Sasaki, Y.K., An Objective Analysis Based on the Variational Method, J. Meteor. Soc. Japan, 1958, vol. 36, pp. 77–88.

  4. Penenko, V.V. and Obraztsov, N.N., A Variational Initialization Method for the Fields of the Meteorological Elements, Meteor. Gidrolog., 1976, no. 11, pp. 1–11.

  5. Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov (Methods of Numerical Modeling of Atmospheric Processes), Leningrad: Gidrometeoizdat, 1981.

  6. Le Dimet, F.-X. and Talagrand, O., Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects, Tellus A: Dyn. Meteor. Oceanography, 1986, vol. 38, iss. 2, pp. 97–110.

  7. Agoshkov, V.I., Metody optimal’nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki (Optimal Control Methods and Adjoint Equations in Mathematical Physics Problems), Moscow: Institute of Numerical Mathematics RAS, 2003.

  8. Mogensen, K., Balmaseda, M.A., Weaver, A.T., Marti, M., and Vidard, A., NEMOVAR: A Variational Data Assimilation System for the NEMO Ocean Model, ECMWF Newsletter, 2009, vol. 120, pp. 17–22.

  9. Le Dimet, F.-X. and Shutyaev, V., On Deterministic Error Analysis in Variational Data Assimilation, Nonlin. Proc. Geophysics, 2005, vol. 12, pp. 481–490.

  10. Gejadze, I., Le Dimet, F.-X., and Shutyaev, V.P., On Analysis Error Covariances in Variational Data Assimilation, SIAM J. Sci. Comput., 2008, vol. 30, no. 4, pp. 1847–1874.

  11. Gejadze, I., Le Dimet, F.-X., and Shutyaev, V.P., On Optimal Solution Error Covariances in Variational Data Assimilation Problems, J. Comp. Phys., 2010, vol. 229, pp. 2159–2178.

  12. Gejadze, I., Shutyaev, V.P., and Le Dimet, F.-X., Analysis Error Covariance Versus Posterior Covariance in Variational Data Assimilation, Quart. J. Royal Meteor. Soc., 2013, vol. 139, pp. 1826–1841.

  13. Agoshkov, V.I., Parmuzin, E.I., and Shutyaev, V.P., Observational Data Assimilation in the Problem of Black Sea Circulation and Sensitivity Analysis of its Solution, Izv., Atmos. Oceanic Phys., 2013, vol. 49, no. 6, pp. 592–602.

  14. Shutyaev, V.P. and Parmuzin, E.I., Sensitivity of Functionals to Observation Data in a Variational Assimilation Problem for a Sea Thermodynamics Model, Num. An. Appl., 2019, vol. 12, no. 2, pp. 191–201.

  15. Alekseev, V.V. and Zalesny, V.B., Chislennaya model’ krupnomasshtabnoi dinamiki okeana: Vychislitel’nye protsessy i sistemy (Numerical Model of Large-Scale Dynamics of Ocean: Numerical Processes and Systems), Moscow: Nauka, 1993, pp. 232–253.

  16. Marchuk, G.I., Dymnikov, V.P., and Zalesny, V.B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii (Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Realization), Leningrad: Gidrometeoizdat, 1987.

  17. Agoshkov, V.I., Gusev, A.V., Diansky, N.A., and Oleinikov, R.V., An Algorithm for the Solution of the Ocean Hydrothermodynamics Problem with Variational Assimilation of the Sea Level Function Data, Russ. J. Num. An. Math. Model., 2007, vol. 22, no. 2, pp. 1–10.

  18. Agoshkov, V.I., Parmuzin, E.I., and Shutyaev, V.P. Numerical Algorithm for Variational Assimilation of Sea Surface Temperature Data, Comp. Math. Math. Phys., 2008, vol. 48, no. 8, pp. 1293–1312.

  19. Zalesny, V.B., Gusev, A.V., Ivchenko, V.O., Tamsalu, R., and Aps, R., Numerical Model of the Baltic Sea Circulation, Russ. J. Num. An. Math. Model., 2013, vol. 28, no. 1, pp. 85–100.

  20. Tikhonov, A.N., On the Regularization of Ill-Posed Problems, Dokl. Akad. Nauk SSSR, 1963, vol. 153, no. 1, pp. 49–52.

  21. Cacuci, D.G., Sensitivity Theory for Nonlinear Systems: II. Extensions to Additional Classes of Responses, J. Math. Phys., 1981, vol. 22, pp. 2803–2812.

  22. Shutyaev, V.P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh (Control Operators and Iterative Algorithms in Variational Data Assimilation Problems), Moscow: Nauka, 2001.

  23. Zalesny, V.B., Marchuk, G.I., Agoshkov, V.I., et al., Numerical Simulation of Large-Scale Ocean Circulation Based on Multicomponent Splitting Method, Russ. J. Num. An. Math. Model., 2010, vol. 25, no. 6, pp. 581–609.

  24. Agoshkov, V.I., Parmuzin, E.I., Zalesny, V.B., et al., Variational Assimilation of Observation Data in the Mathematical Model of the Baltic Sea Dynamics, Russ. J. Num. An. Math. Model., 2015, vol. 30, no. 4, pp. 203–212.

  25. Agoshkov, V.I., Parmuzin, E.I., Zakharova, N.B., and Shutyaev, V.P., Variational Assimilation with Covariance Matrices of Observation Data Errors for the Model of the Baltic Sea Dynamics, Russ. J. Num. An. Math. Model., 2018, vol. 33, no. 3, pp. 149–160.

  26. Zakharova, N.B. and Lebedev, S.A., Interpolation of On-Line Data of the ARGO Buoy System for Data Assimilation in the World Ocean Circulation Model, Sovr. Probl. Distants. Zond. Zemli Kosm., 2010, vol. 7, no. 4, pp. 104–111.

  27. Zakharova, N.B., Agoshkov, V.I., and Parmuzin, E.I., The New Method of ARGO Buoys System Observation Data Interpolation, Russ. J. Num. An. Math. Model., 2013, vol. 28, no. 1, pp. 67–84.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-71-20035, for Sections 2 and 3) and RFBR (project no. 18-01-00267, for the numerical calculations).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Shutyaev or E. I. Parmuzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutyaev, V.P., Parmuzin, E.I. Sensitivity of Functionals of Solution to a Variational Data Assimilation Problem with Simultaneous Reconstruction of Heat Fluxes and Initial State for a Sea Thermodynamics Model. Numer. Analys. Appl. 13, 382–392 (2020). https://doi.org/10.1134/S1995423920040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423920040084

Navigation