Skip to main content
Log in

A Finite-Difference Scheme for the One-Dimensional Maxwell Equations

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

ABSTRACT

This paper deals with a difference scheme of second-order approximation using Laquerre transform for the one-dimensional Maxwell equations. Supplementary parameters are introduced into this difference scheme. These parameters are obtained by minimizing the error of a difference approximation for a Helmholtz equation. The optimal parameters do not depend on the step size and the number of nodes in the difference scheme. It is shown that the use of the Laguerre decomposition method allows obtaining higher accuracy of approximation of the equations in comparison with similar difference schemes when using the Fourier decomposition method. The second-order finite difference scheme with the parameters is compared to a fourth-order difference scheme in two cases: The use of the optimal difference scheme when solving a problem of electromagnetic pulse propagation in an inhomogeneous medium yields a solution accuracy comparable to that obtained with the fourth-order difference scheme. When solving an inverse problem the second-order difference scheme allows obtaining higher solution accuracy as compared to the fourth-order difference scheme. In these problems the second-order difference scheme with the supplementary parameters has decreased the calculation time by 20–25% as compared to the fourth-order difference scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bergmann, T., Robertsson, J.O.A., and Holliger, K., Finite-Difference Modeling of Electromagnetic Wave Propagation in Dispersive and Attenuating Media, Geophys., 1998, vol. 63, no. 3, pp. 856–867.

  2. Bergmann, T., Blanch, J.O., Robertsson, J.O.A., and Holliger, K., A Simplified Lax–Wendroff Correction for Staggered-Grid FDTD Modeling of Electromagnetic Wave Propagation in Frequency-Dependent Media, Geophys., 1999, vol. 64, no. 5, pp. 1369–1377.

  3. Luebbers, R. and Hansberger, F.P., FDTD for Nth-Order Dispersive Media, IEEE Trans. Antennas Propagation, 1992, vol. 40, no. 11, pp. 1297–1301.

  4. Turner, G. and Siggins, A.F., Constant Q Attenuation of Subsurface Radar Pulses, Geophys., 1994, vol. 59, no. 8, pp. 1192–1200.

  5. Elektrorazvedka. Spravochnik geofizika (Electrical Prospecting. A Handbook of the Geophysicist), Tarkhov, A.G., Ed., Moscow: Nedra, 1980.

  6. Golub, G. and Van Loan, Ch., Matrichnye vychisleniya (Matrix Computations), Moscow: Mir, 1999.

  7. Jo, C.-H., Shin, C., and Suh, H.S., An Optimal 9-Point, Finite-Difference, Frequency-Space, 2D Scalar Wave Extrapolator,Geophys., 1996, vol. 61, no. 2, pp. 529–537.

  8. Chen, J.B., An Average Derivative Optimal Scheme for Frequency-Domain Scalar Wave Equation, Geophys., 2012, vol. 77, no. 6, pp. T201–T210.

  9. Tam, C.K. and Webb, J.C., Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics, J. Comput. Phys., 1993, vol. 107, pp. 262–281.

  10. Mastryukov, A.F., Optimal Finite Difference Schemes for a Wave Equation, Sib. Zh. Vych. Mat., 2016, vol. 19, no. 4, pp. 385–399.

  11. Mastryukov, A.F. and Mikhailenko, B.G., Optimal Difference Schemes for Maxwell’s Equations in Solving Forward Problems of Electromagnetic Soundings, Geolog. Geofiz., 2015, no. 9, pp. 1713–1722.

  12. Mastryukov, A.F., The Solution of the Inverse Problem for the Diffusion Equation Based on Laguerre Transformation, Mat. Model., 2007, vol. 19, no. 9, pp. 15–26.

  13. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.

  14. Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.

  15. Vasil’ev, F.P., Chislennye metody resheniya ekstremal’nykh zadach (Numerical Methods for Solving Extremal Problems), Moscow: Nauka, 1980.

  16. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

  17. Spravochnik po spetsialnym funktsiyam (Handbook of Mathematical Functions), Abramowitz, M. and Stegun, I., Eds., Moscow: Nauka, 1979.

  18. Ghrist, M., Fornberg, B., and Driscoll, T.A., Staggered Time Integrator for Wave Equations, SIAM J. Num. An., 2000, vol. 38, no. 3, pp. 718–741.

  19. Demmel, J., Vychislitel’naya lineinaya algebra (Applied Numerical Linear Algebra), Moscow: Mir, 2001.

  20. Mastryukov, A.F., Determination of the Diffusion Coefficient,Mat. Model., 2015, vol. 27, no. 1, pp. 16–32.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Mastryukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastryukov, A.F. A Finite-Difference Scheme for the One-Dimensional Maxwell Equations. Numer. Analys. Appl. 13, 57–67 (2020). https://doi.org/10.1134/S199542392001005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542392001005X

Keywords

Navigation