Skip to main content
Log in

A study of the performance properties of oligoetheracrylate binder cured by coherent UV radiation

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The physicochemical, thermomechanical, and elastic-strength characteristics of samples based on an oligoetheracrylate binder cured both under the action of only coherent UV radiation and with subsequent aftercuring in a UV oven were studied. It was established by differential scanning calorimetry that full curing of the polymeric matrix is not achieved by coherent UV radiation. The use of additional treatment in a UV oven leads to the formation of a denser three-dimensional cross linking, which increases the brittleness of the polymeric matrix. The introduction of 16A electrocorundum as a filler into the polymeric matrix decreases the thermomechanical and elastic-strength characteristics of an oligoetheracrylate binder regardless of the curing mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Naumov, Introduction to the Kinetics of Photoinitiated Radical Polymerization of UV Varnishes and Paints (MGUP, Moscow, 2004) [in Russian].

    Google Scholar 

  2. N. G. Vasil’eva, “Innovative technologies in polymerbased printing,” Vestn. Kazan. Tekhnol. Univ. 17 (7), 157–159 (2014).

    Google Scholar 

  3. E. N. Kablov, O. V. Startsev, I. S. Deev, and E. F. Nikishin, “Properties of polymeric composite materials after exposure to open space in circumterrestrial orbits: Part 1,” Vse Mater., Entsikl. Sprav., No. 10, 2–9 (2012).

    Google Scholar 

  4. E. N. Kablov, O. V. Startsev, I. S. Deev, and E. F. Nikishin, “Properties of polymeric composite materials after exposure to open space in circumterrestrial orbits: Part 2,” Vse Mater., Entsikl. Sprav., No. 11, 2–16 (2012).

    Google Scholar 

  5. E. N. Kablov, “Chemistry of aviation materials science,” Ross. Khim. Zh. 54 (1), 3–4 (2010).

    CAS  Google Scholar 

  6. E. N. Kablov, B. V. Shchetanov, Yu. A. Ivakhnenko, and Yu. A. Balinova, “Promising reinforcing high-temperature fibers for metal and ceramic composite materials,” Tr. VIAM, No. 2 (2013).

    Google Scholar 

  7. R. R. Mukhametov, K. R. Akhmadieva, L. V. Chursova, and D. I. Kogan, “New polymeric binders for promising methods of manufacture of structural fiber PCMs,” Aviats. Mate. Tekhnol., No. 2, 38–42 (2011).

    Google Scholar 

  8. V. G. Zheleznyak and L. V. Chursova, “Modification of binders and matrices on their basis in order to enhance fracture toughness,” Aviats. Mate. Tekhnol., No. 1, 47–50 (2014).

    Google Scholar 

  9. M. M. Grigor’ev, A. V. Khrul’kov, Ya. M. Gurevich, and N. N. Panina, “Production of fiberglass skins by vacuum infusion using an epoxy anhydride binder and a semipermeable membrane,” Tr. VIAM, No. 2 (2014).

    Google Scholar 

  10. A. N. Babin, “Binders for polymeric composite materials of new generation,” Tr. VIAM, No. 4, 11–24 (2013).

    Google Scholar 

  11. L. V. Chursova, M. A. Kim, N. N. Panina, and E. P. Shvetsov, “A nano-modified epoxy binder for the construction industry,” Aviats. Mate. Tekhnol., No. 1, 40–47 (2013).

    Google Scholar 

  12. D. A. Aronovich, O. A. Sineokova, N. V. Zaitova, et al., “UV-curable anaerobic adhesive compositions,” Polym. Sci., Ser. D 8 (1), 27–32 (2015).

    Article  CAS  Google Scholar 

  13. M. Yu. Seregin, “An overview of modern materials and technologies for prototyping,” Perspekt. Nauki, No. 6, 77–79 (2012).

    Google Scholar 

  14. S. N. Matveev, “Modeling of products from polymeric materials by 3D-printing,” Vestn. Kazan. Tekhnol. Univ. 18 (1), 260–262 (2015).

    Google Scholar 

  15. D. V. Gusev, M. A. Larionov, Yu. M. Lipnitskii, and M. Yu. Kulikov, “Application of 3D-printing technology for the manufacture of aerodynamic models of rocket and space technology products,” Kosmonavt. Raketostr. 76 (3), 137–142 (2014).

    Google Scholar 

  16. R. V. Kovalenko, “Modern polymer materials and 3D-printing technologies,” Vestn. Kazan. Tekhnol. Univ. 18 (1), 263–266 (2015).

    Google Scholar 

  17. A. V. Evsseev, M. A. Markov, V. Ya. Panchenko, and V. P. Yakunin, “Acrylic photocurable resins with low viscosity for laser stereolithography,” in Proc. 8th Eur. Stereolithography User Group Meeting (Darmstadt, 1996).

    Google Scholar 

  18. I. E. Malov and I. N. Shiganov, “Features of photopolymerisable compositions for stereolithography with visible lasers,” Inzh. Zh.: Nauka Innovatsii, No. 6, 8 (2012).

    Google Scholar 

  19. M. N. Lysych, R. A. Belinchenko, and A. A. Shkil’nyi, “Materials for 3D-printing,” Aktual. Napravleniya Nauch. Issled. XXI Veka: Teor. Prakt. 4 (3), 200–205 (2014).

    Google Scholar 

  20. A. N. Monyatsi, et al., “Effect of head-to-head addition on vinyl acetate propagation kinetics in radical polymerization,” Macromolecules 47 (23), 8145–8153 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tkachuk.

Additional information

Original Russian Text © A.I. Tsybin, A.I. Tkachuk, T.A. Grebeneva, A.I. Samatadze, M.M. Novikov, 2016, published in Klei, Germetiki, Tekhnologii, 2016, No. 6, pp. 13–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsybin, A.I., Tkachuk, A.I., Grebeneva, T.A. et al. A study of the performance properties of oligoetheracrylate binder cured by coherent UV radiation. Polym. Sci. Ser. D 10, 13–18 (2017). https://doi.org/10.1134/S1995421217010221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421217010221

Keywords

Navigation