Skip to main content
Log in

Unique Haplotypes of Artemia salina (Crustacea, Branchiopoda, Anostraca) in Hypersaline Lake Sasyk-Sivash (Crimea)

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The genetic structure of the population of Artemia salina (L., 1758) species from the hypersaline Lake Sasyk-Sivash was studied based on a fragment of the cytochrome c oxidase subunit I (COI) mitochondrial DNA gene. The phylogeny reconstruction was carried out using all nucleotide sequences of this gene available in the international GenBank database (NCBI) for the salina species. Genealogical relationships between COI haplotypes were established and phylogeographic patterns were identified. Common haplotypes were noted in Western Mediterranean populations, which can be a consequence of their location in a single migratory corridor of birds that, as is known, contribute to a passive distribution of the resting stages of artemia. Geographically isolated groups of populations from Libya, Tunisia, Egypt, Cyprus, and Crimea are characterized by unique haplotypes currently not found in other Mediterranean populations. It is suggested that unique haplotypes can be endemic for geographically distant regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adamowicz, S.J. and Purvis, A., How many branchiopod crustacean species are there? Quantifying the components of underestimation, Global Ecol. Biogeogr., 2005, vol. 14, p. 455. https://doi.org/10.1111/j.1466-822X.2005.00164.x

    Article  Google Scholar 

  2. Adamowicz, S.J., Menu-Marque, S., Hebert, P.D., and Purvis, A., Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina, Biol. J. Linn. Soc., 2007, vol. 90, p. 279. https://doi.org/10.1111/j.1095-8312.2007.00723.x

    Article  Google Scholar 

  3. Anufriieva, E.V. and Shadrin, N.V., Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region, Zool. Res., 2015, vol. 18, vol. 36, no. 6, p. 328.

  4. Anufriieva, E., Kolesnikova, E., Revkova, T., et al., Human-induced sharp salinity changes in the world’s largest hypersaline lagoon Bay Sivash (Crimea) and their effects on the ecosystem, Water, 2022, vol. 14, no. 3, p. 403. https://doi.org/10.3390/w14030403

    Article  Google Scholar 

  5. Balushkina, E.V., Golubkov, S.M., Golubkov, M.S., et al., Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems, Zh. Obshch. Biol., 2009, vol. 70, no. 6, p. 504.

    CAS  PubMed  Google Scholar 

  6. Eimanifar, A., Van Stappen, G., Marden, B., and Wink, M., Artemia biodiversity in Asia with the focus on the phylogeography of the introduced American species Artemia franciscana Kellogg, 1906, Mol. Phylogen. Evol., 2014, vol. 79, p. 392. https://doi.org/10.1016/j.ympev.2014.06.027

    Article  Google Scholar 

  7. Fontaneto, D., Long-distance passive dispersal in microscopic aquatic animals, Mol. Ecol., 2019, vol. 7, p. 10. https://doi.org/10.1186/s40462-019-0155-7

    Article  Google Scholar 

  8. Frisch, D., Green, A.J., and Figuerola, J., High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds, Aquat. Sci., 2007, vol. 69, no. 4, p. 568. https://doi.org/10.1007/s00027-007-0915-0

    Article  Google Scholar 

  9. Gelas, K. and De Meester, L., Phylogeography of Daphnia magna in Europe, Mol. Ecol., 2005, vol. 14, p. 753. https://doi.org/10.1111/j.1365-294X.2004.02434.x

    Article  CAS  PubMed  Google Scholar 

  10. Gómez, A., Carvalho, G.R., and Lunt, D.H., Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks, Proc. R. Soc. London, Ser. B, 2000, vol. 267, p. 2189. https://doi.org/10.4319/lo.2005.50.2.0737

    Article  Google Scholar 

  11. Gómez, A., Serra, M., Carvalho, G.R., and Lunt, D.H., Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera), Evolution, 2002, vol. 56, p. 1431. https://doi.org/10.1111/j.0014-3820.2002.tb01455.x

    Article  PubMed  Google Scholar 

  12. Gómez, A., Montero-Pau, J., Lunt, D.H., et al., Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula, Mol. Ecol., 2007, vol. 16, p. 3228. https://doi.org/10.1111/j.1365-294X.2007.03372.x

    Article  CAS  PubMed  Google Scholar 

  13. Green, A.J., Sánchez, M.I., Amat, F., et al., Dispersal of invasive and native brine shrimps Artemia (Anostraca) via waterbirds, Limnol. Oceanogr., 2005, vol. 50, p. 737.

    Article  Google Scholar 

  14. Hall, T., Biosciences, I., and Carlsbad, C., BioEdit: An important software for molecular biology, GERF Bull. Biosci., 2011, vol. 2, no. 1, p. 60.

    Google Scholar 

  15. Hebert, P.D., Variable environments and evolutionary diversification in inland waters, Adv. Mol. Ecol., 1998, p. 267.

    Google Scholar 

  16. Hebert, P.D., Witt, J.D., and Adamowicz, S.J., Phylogeographical patterning in Daphnia ambigua: Regional divergence and intercontinental cohesion, Limnol. Oceanogr., 2003, vol. 48, p. 261. https://doi.org/10.4319/lo.2003.48.1.0261

    Article  Google Scholar 

  17. Hessen, D.O., Jensen, T.C., and Walseng, B., Zooplankton diversity and dispersal by birds; insights from different geographical scales, Front. Ecol. Evol., 2019, vol. 20, p. 7. https://doi.org/10.3389/fevo.2019.00074

    Article  Google Scholar 

  18. Ishida, S. and Taylor, D.J., Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod, BMC Evol. Biol., 2007, vol. 7, p. 52. https://doi.org/10.1186/1471-2148-7-52

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, p. 1547. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lantushenko, A., Meger, Y., Gadzhi, A., et al., Artemia spp. (Crustacea, Anostraca) in Crimea: New molecular genetic results and new questions without answers, Water, 2022, vol. 14, no. 17, p. 2617. https://doi.org/10.3390/w14172617

    Article  Google Scholar 

  21. Le, J., Cho, B.C., and Park, J.S., Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities, Mar. Genom., 2022, vol. 61, p. 100919. https://doi.org/10.1016/j.margen.2021.100919

    Article  CAS  Google Scholar 

  22. Leigh, J.W. and Bryant, D., POPART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, p. 1110. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  23. Marden, B., Brown, P., and Bosteels, T., Great Salt Lake Artemia: ecosystem functions and services with a global reach, in Great Salt Lake Biology, 2020. https://doi.org/10.1080/10454438.2018.1484838

  24. Meester, L., Gómez, A., Okamura, B., and Schwenk, K., The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms, Acta Oecol., 2002, vol. 23, p. 121. https://doi.org/10.1016/S1146-609X(02)01145-1

    Article  Google Scholar 

  25. Mergeay, J., Verschuren, D., and De Meester, L., Cryptic invasion and dispersal of an American Daphnia in East Africa, Limnol. Oceanogr., 2005, vol. 50, p. 1278. https://doi.org/10.4319/lo.2005.50.4.1278

    Article  CAS  Google Scholar 

  26. Muñoz, J., Gomez, A., Green, A.J., et al., Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca), Mol. Ecol., 2008, vol. 17, no. 13, p. 3160. https://doi.org/10.1111/j.1365-294X.2008.03818.x

    Article  CAS  PubMed  Google Scholar 

  27. Muñoz, J., Amat, F., Green, A.J., et al., Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range, Peer J., 2013, vol. 1, p. 200. https://doi.org/10.7717/peerj.200

    Article  Google Scholar 

  28. Naceur, H.B., Romdhan, M.S., and Stappen, G.V., Potential use of fatty acid profile for Artemia spp. discrimination, Inland Water Biol., 2020, vol. 13, no. 3, p. 434. https://doi.org/10.1134/S199508292003013X

    Article  Google Scholar 

  29. Paland, S., Colbourne, J.K., and Lynch, M., Evolutionary history of contagious asexuality in Daphnia pulex, Evolution, 2005, vol. 59, p. 800. https://doi.org/10.1111/j.0014-3820.2005.tb01754.x

    Article  CAS  PubMed  Google Scholar 

  30. Penton, E.H., Hebert, P.D., and Crease, T.J., Mitochondrial DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism?, Mol. Ecol., 2004, vol. 13, p. 97. https://doi.org/10.1046/j.1365-294X.2003.02024.x

    Article  CAS  PubMed  Google Scholar 

  31. Ronquist, F., Teslenko, M., Mark, P., et al., MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, p. 539. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rozas, J., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, p. 3299. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  33. Sainz-Escudero, L., López-Estrada, E.K., Rodríguez-Flores, P.C., and García-París, M., Settling taxonomic and nomenclatural problems in brine shrimps, Artemia (Crustacea: Branchiopoda: Anostraca), by integrating mitogenomics, marker discordances and nomenclature rules, Peer J., 2021, vol. 9, p. 10865. https://doi.org/10.7717/peerj.10865

    Article  CAS  Google Scholar 

  34. Sainz-Escudero, L., López-Estrada, E.K., Rodríguez-Flores, P.C., and García-París, M., Brine shrimps adrift: historical species turnover in Western Mediterranean Artemia (Anostraca), Biol. Invas., 2022, vol. 24, p. 2477. https://doi.org/10.1007/s10530-022-02779-6

    Article  Google Scholar 

  35. Sanchez, M.I., Paredes, I., Lebouvier, M., and Green, A.J., Functional role of native and invasive filter-feeders, and the effect of parasites: learning from hypersaline ecosystems, PLoS One, 2016, vol. 11, no. 8, p. e0161478. https://doi.org/10.1371/journal.pone.0161478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shadrin, N., Stetsiuk, A., and Anufriieva, E., Differences in mercury concentrations in water and hydrobionts of the Crimean saline lakes: does only salinity matter?, Water, 2022, vol. 14, no. 17, p. e2613. https://doi.org/10.3390/w14172613

    Article  CAS  Google Scholar 

  37. Stappen, G., Sui, L., Hoa, V.N., et al., 2020. Review on integrated production of the brine shrimp Artemia in solar salt ponds, Rev. Aquacult., vol. 12, p. 1054. https://doi.org/10.1111/raq.12371

    Article  Google Scholar 

  38. Templeton, A., Crandall, K., and Sing, C., A cladistic analysis of phenotypic associations with haplotypes inferredfrom restriction endonuclease mapping and DNA sequencedata. III. Cladogram estimation, Genetics, 1992, no. 132, p. 619. https://doi.org/10.1093/genetics/132.2.619

  39. Vos, S., Rombauts, S., Coussement, L., et al., The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments, BMC Genomics, 2021, vol. 22, p. 635. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07937-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weider, L.J., Hobaek, A., Hebert, P.D., and Crease, T.J., Holarctic phylogeography of an asexual species complex – II. Allozymic variation and clonal structure in Arctic Daphnia, Mol. Ecol., 1999, vol. 8, p. 1. https://doi.org/10.1046/j.1365-294X.1999.00522.x

    Article  Google Scholar 

  41. Zierold, T., Hanfling, B., and Gómez, A., Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis, BMC Evol. Biol., 2007, vol. 7, p. 161. https://doi.org/10.1186/1471-2148-7-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Genetic studies were performed within the program Priority 2030 of Sevastopol State University, strategic project no. 3, 121121700318-1. Field studies in Lake Sasyk-Sivash were carried out as part of State Task of the Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, no. 121041500203-3 “Study of Peculiarities of the Structure and Dynamics of Ecosystems of Saline Lakes and Lagoons under Conditions of Climatic Variability and Anthropogenic Load to Create Scientific Foundations for Their Rational Use.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Meger.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Abbreviations: COI, cytochrome c oxidase subunit I; H, haplotype.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantushenko, A.O., Meger, Y.V., Gadzhi, A.V. et al. Unique Haplotypes of Artemia salina (Crustacea, Branchiopoda, Anostraca) in Hypersaline Lake Sasyk-Sivash (Crimea). Inland Water Biol 16, 884–891 (2023). https://doi.org/10.1134/S1995082923050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923050085

Keywords:

Navigation