Skip to main content
Log in

Mortality and Survival in Marine Bivalve Beds under Undisturbed Environmental Conditions (in the White Sea)

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Spatial and temporal variabilities in the mortality of nine bivalve species widely distributed in the littoral and sublittoral zones of the White Sea have been studied in 19 mollusk beds in the Keret Archipelago (Kandalaksha Bay). Life tables are constructed based on long-term observations (1989–2014) of the dynamics of the size and age distribution in the beds. Using these tables, one may study the age-specific mortality and, accordingly, its influence on different stages of the life cycle. In some cases, it is possible to follow the dynamics of individual generations throughout their entire life cycle and construct cohort life tables, which is almost unprecedented for free-living unattached marine bottom invertebrates. The mortality characteristics of most of the analyzed bivalve species are obtained for the first time. Significant fluctuations in the elimination level at different ages and their main causes are identified. The average (regardless of age) annual mortality occurs to be sensitive to environmental conditions, and thus can be used for an integral assessment of mollusk life conditions. For White Sea bivalves, the mortality varies 1.5–2 times in different beds of the same species. At the same time, the mortality rate was not constant throughout the life cycle of Bivalvia. The estimate varied more than ten-fold in different age groups, with a maximum from 0.04 to 0.92 year–1. The main influence on mollusk survival was provided by the degree of protection, intraspecific relationships, and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alimov, A.F., Vvedeniye v produktsionnuyu gidrobiologiyu (Introduction to the Productional Hydrobiology), Leningrad: Gidrometeoizdat, 1989.

  2. Allen, K.R., Relation between production and biomass, Can. J. Fish Aquat. Sci., 1971, vol. 28, p. 1537.

    Google Scholar 

  3. Ankar, S., Growth and production of Macoma balthica (L.) in a northern baltic soft bottom, Ophelia, 1980, Suppl. 1, p. 31.

  4. Appeldoorn, R.S., Variation in the growth rate of Mya arenaria and its relationship to the environment as analyzed through principal component analysis and the ω parameter of von Bertalanffy equation, Fish. Bull., 1983, vol. 81, no. 1, p. 75.

    Google Scholar 

  5. Armonies, W., Changes in distribution patterns of 0-group bivalves in the Wadden Sea: Byssus-drifting releases juveniles from the constraints of hydrography, J. Sea Res., 1996, vol. 35, no. 4, pp. 323–334.

    Article  Google Scholar 

  6. Armonies, W. and Hellwig-Armonies, M., Passive settlement of Macoma balthica spat on tidal flats of the Wadden Sea and subsequent migration of juveniles, Neth. J. Sea Res., 1992, vol. 29, no. 4, p. 371.

    Article  Google Scholar 

  7. Babkov, A.I., Brief hydrological characteristics of the Chupa Bay of the White Sea, Ekologicheskiye issledovaniya perspektivnykh ob’ektov marikul’tury fauny Belogo morya (Ecological Studies of Perspective Objects of Mariculture of Fauna in the White sea), Leningrad: Zool. Inst. Ross. Akad. Nauk, 1982, p. 3.

    Google Scholar 

  8. Babkov, A.I. and Golikov, A.N., Gidrobiokompleksy Belogo morya (Hydrobiocomplexes of the White Sea), Leningrad: Zool. Inst. Ross. Akad. Nauk, 1984.

  9. Babkov, A.I. and Prygunkova, R.V., Anomalies of the seasonal development of zooplankton and hydrological conditions in the Chupa Bay of the White Sea, Gidrobiologiya i biogeografiya shelfov kholodnykh i umerennykh vod Mirovogo okeana (Hydrobiology and Biogeography of Shelves in Cold and Temperate Waters of the World Ocean), Leningrad: Nauka, 1974, p. 99.

    Google Scholar 

  10. Bachelet, G., Recruitment and year-to-year variability in a population of Macoma balthica (L.), Hydrobiologia, 1986, vol. 142, no. 1, p. 233.

    Article  Google Scholar 

  11. Beal, B.F., Biotic and abiotic factors influencing growth and survival of wild and cultured individuals of the softshell clam (Mya arenaria L.) in eastern Maine, J. Shellfish Res., 2006a, vol. 25, no. 2, p. 461.

    Article  Google Scholar 

  12. Beal, B.F., Relative importance of predation and intraspecific competition in regulating growth and survival of juveniles of the soft-shell clam, Mya arenaria L., at several spatial scales, J. Exp. Mar. Biol. Ecol., 2006b, vol. 336, no. 1, p. 1.

    Article  Google Scholar 

  13. Beal, B.F. and Kraus, G.M., Interactive effects of initial size, stocking density, and type of predator deterrent netting on survival and growth of cultured juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine, Aquaculture, 2002, vol. 208, nos. 1–2, p. 81. https://doi.org/10.1016/S0044-8486(01)00900-0

    Article  Google Scholar 

  14. Beal, B.F., Parker, M.R., and Vencile, K.W., Seasonal effects of intraspecific density and predator exclusion along a shore-level gradient on survival and growth of juveniles of the soft-shell clam, Mya arenaria L., in Maine, USA, J. Exp. Mar. Biol. Ecol., 2001, vol. 264, no. 2, p. 133. https://doi.org/10.1016/S0022-0981(01)00320-3

    Article  Google Scholar 

  15. Beal, B.F., Coffin, C.R., Randall, S.F., et al., Spatial Variability in recruitment of an infaunal bivalve: experimental effects of predator exclusion on the softshell clam (Mya arenaria L.) along three tidal estuaries in Southern Maine, USA, J. Shellfish Res., 2018, vol. 37, no. 1, p. 1.

    Article  Google Scholar 

  16. Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations, and Communities, Oxford: Blackwell Science, 1996.

    Book  Google Scholar 

  17. Begum, S., Basova, L., Heilmayer, O., et al., Growth and energy budget models of the bivalve Arctica islandica at six different sites in the Northeast Atlantic Realm, J. Shellfish Res., 2010, vol. 29, no. 1, p. 107. https://doi.org/10.2983/035.029.0103

    Article  Google Scholar 

  18. Beloe more. Biologicheskiye resursy i problemy ikh ratsionalnogo ispolzovaniya, Ser.: Issledovanie fauny morei (White Sea. Biological Resources and Problems of their Rational Use, Ser.: Study of the Fauna of the Seas), St. Peterburg: Zool. Inst. Ross. Akad. Nauk, 1995, vol. 42.

  19. Berger, V.J., Naumov, A.D., Usov, N.V., et al., 36-Years Time-Series (1963–1998) of Zooplankton, Temperature and Salinity in the White Sea, Saint-Petersburg: Silver Spring, 2003.

  20. Beukema, J.J., Successive changes in distribution patterns as an adaptive strategy in the bivalve Macoma balthica (L.) in the Wadden sea, Helgoland Mar. Res., 1993, vol. 47, no. 3, p. 287.

    Google Scholar 

  21. Beukema, J.J. and Dekker, R., Decline of recruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries, Mar. Ecol.: Prog. Ser., 2005, vol. 287, p. 149. https://doi.org/10.3354/meps287149

    Article  Google Scholar 

  22. Beukema, J.J. and Dekker, R., Variability in annual recruitment success as a determinant of long-term and large-scale variation in annual production of intertidal Wadden Sea mussels (Mytilus edulis), Helgoland Mar. Res., 2007, vol. 61, no. 2, p. 71. https://doi.org/10.1007/s10152-006-0054-3

    Article  Google Scholar 

  23. Bowen, J. and Hunt, H., Settlement and recruitment patterns of the soft-shell clam, Mya arenaria, on the Northern Shore of the Bay of Fundy, Canada, Estuaries Coasts, 2009, vol. 32, no. 4, p. 758. https://doi.org/10.1007/s12237-009-9151-2

    Article  Google Scholar 

  24. Beukema, J.J. and Dekker, R., Variability in predator abundance links winter temperatures and bivalve recruitment: correlative evidence from long-term data in a tidal flat, Mar. Ecol.: Prog. Ser., 2014, vol. 513, p. 1. https://doi.org/10.3354/meps10978

    Article  Google Scholar 

  25. Beukema, J.J., Honkoop, P., and Dekker, R., Recruitment in Macoma balthica after mild and cold winters and its possible control by egg production and shrimp predation, Hydrobiologia, 1998, vol. 375, p. 23. https://doi.org/10.1023/A:1017025526098

    Article  Google Scholar 

  26. Beukema, J.J., Dekker, R., Essink, K., and Michaelis, H., Synchronized reproductive success in the main bivalve species in the Wadden Sea: causes and consequences, Mar. Ecol.: Prog. Ser., 2001, vol. 211, p. 143. https://doi.org/10.3354/meps211143

    Article  Google Scholar 

  27. Brey, T., Arntz, W.E., Pauly, D., and Rumohr, H., Arctica (Cyprina) islandica in Kiel Bay (Western Baltic): growth, production and ecological significance, J. Exp. Mar. Biol. Ecol., 1990, vol. 136, no. 3, p. 217. https://doi.org/10.1016/0022-0981(90)90162-6

    Article  Google Scholar 

  28. Brey, T., Growth performance and mortality in aquatic macrobenthic invertebrates, Adv. Mar. Biol., 1999, vol. 35, pp. 153–223.

    Article  Google Scholar 

  29. Brousseau, D.J. and Baglivo, J.A., Sensitivity of the population growth rate to changes in single life history parameters: its application to Mya arenaria (Mollusca: Pelecypoda), Fish. Bull., 1984, vol. 82, no. 3, p. 537.

    Google Scholar 

  30. Brousseau, D.J. and Baglivo, J.A., Life tables for two field populations of soft-shall clam, Mya arenaria, (Mollusca: Pelecypoda) from Long Island Sound, Fish. Bull., 1988, vol. 86, p. 567.

    Google Scholar 

  31. Brousseau, D.J., Population dynamics of the soft-shell clam Mya arenaria, Mar. Biol., 1978, vol. 50, no. 1, p. 63.

    Article  Google Scholar 

  32. Burkovsky, I.V., Stolyarov, A.P., and Udalov, A.A., Larvae as a factor in the formation of a community in the silt-sand littoral of the White Sea, Zool. Zh., 1998, vol. 77, no. 11, p. 1229.

    Google Scholar 

  33. Clements, J.C. and Hunt, H.L., Effects of CO2-driven sediment acidification on infaunal marine bivalves: A synthesis, Mar. Pollut. Bull., 2017, vol. 117, nos. 1–2, pp. 6–16. https://doi.org/10.1016/j.marpolbul.2017.01.053

    Article  CAS  Google Scholar 

  34. Clements, J.C., Woodard, K.D., and Hunt, H.L., Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria), J. Exp. Mar. Biol. Ecol., 2016, vol. 477, p. 103. https://doi.org/10.1016/j.jembe.2016.01.013

    Article  Google Scholar 

  35. Commito, J.A., Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA, Mar. Biol., 1982, vol. 69, no. 2, p. 187.

    Article  Google Scholar 

  36. Connell, J.H., The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus, Ecology, 1961, vol. 42, no. 4, pp. 710–723.

    Article  Google Scholar 

  37. Connell, J.H., A predator-prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais, Ecol. Monogr., 1970, vol. 40, no. 1, p. 49.

    Article  Google Scholar 

  38. Dare, P.J., Settlement, Growth and Production of the Mussel, Mytilus Edulis L., in Morecambe Bay, England, London: Her Majesty’s Stationery Office, 1976. (Fishery Investigations. Ministry of Agriculture. Fish. Food. Ser. II. V. 28).

  39. Elmgren, R., Ankar, S., Marteleur, B., and Ejdung, G., Adult interference with postlarvae in soft sediments: the pontoporeia-macoma example, Ecology, 1986, vol. 67, no. 4, p. 828.

    Article  Google Scholar 

  40. Flach, E.C., The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft-bottom areas on the Swedish west coast, J. Sea Res., 2003, vol. 49, no. 1, p. 59. https://doi.org/10.1016/S1385-1101(02)00199-5

    Article  Google Scholar 

  41. Frank, P.W., Growth rates and longevity of some gastropod mollusks on the coral reef at Heron Island, Oecologia, 1969, vol. 2, no. 2, p. 232.

    Article  Google Scholar 

  42. Freeman, K.R. and Dickie, L.M., Growth and mortality of the blue mussel Mytilus edulis in relation to environmental indexing, J. Fish Res. Board Can., 1979, vol. 36, no. 10, p. 1238.

    Article  Google Scholar 

  43. Gerasimova, A.V., Spatial-temporal organization of settlements of marine bivalve mollusks (White Sea), Doctoral (Biol.) Dissertation, St. Petersburg, 2021.

  44. Gerasimova, A.V. and Maksimovich, N.V., On regularities of bivalvia population organization in the White Sea, Vestn. S.-Peterb. Gos. Univ., 2009, vol. 3, no. 3, p. 82.

    Google Scholar 

  45. Gerasimova, A. and Maximovich, N., Age-size structure of common bivalve mollusc populations in the White Sea: the causes of instability, Hydrobiologia, 2013, vol. 706, no. 1, p. 119. https://doi.org/10.1007/s10750-012-1415-3

    Article  Google Scholar 

  46. Gerasimova, A., Maximovich, N., and Filippova, N., Cohort life tables for a population of the soft-shell clam, Mya arenaria L., in the White Sea, Helgoland Mar. Res., 2015, vol. 69, no. 2, p. 141. https://doi.org/10.1007/s10152-014-0423-2

    Article  Google Scholar 

  47. Gerasimova, A.V., Grigoryeva, A.S., and Maksimovich, N.V., 2017a. Settlement mechanisms of Arctica islandica (Linnaeus, 1767) in the White Sea: long-term rotation or imaginary stationarity, Materialy XX nauchnogo seminara “Chteniya pamyti K.M. Deryugina” (Proc. X Sci. Seminar “Readings in Memory of K.M. Deryugin”), St. Petersburg, 2017a.

  48. Gerasimova, A.V., Filippova, N.A., and Maksimovich, N.V., Stability and variability of population characteristics of Macoma balthica L. in the White Sea, XIII Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem “Izucheniye. ratsionalnoye ispolzovaniye i okhrana prirodnykh resursov Belogo morya” (XIII All-Russ. Conf. Int. Part. “Study, Rational Use and Protection of Natural Resources of the White Sea), St. Petersburg, 2017b.

  49. Gerasimova, A.V., Maximovic, N.V., Filippov, N.A., et al., Bivalve Mya arenaria L. as a model object in demecology: dynamics of bed structure, mortality and growth in the Kandalaksha Bay of the White Sea, Hydrobiologia, 2021, vol. 848, no. 19, p. 4511. https://doi.org/10.1007/s10750-021-04658-y

    Article  CAS  Google Scholar 

  50. Gilyarov, A.M., Populyatsionnaya ekologiya: Uchebnoe posobie (Population Ecology: Handbook), Moscow: Mosk. Gos. Univ., 1990.

  51. Golikov, A.N., Scarlato, O.A., Galtsova, V.V., and Menshutkina, T.V., Ecosystems of the Chupa Inlet of the White Sea and their seasonal dynamics, Biotsenozy guby Chupa Belogo morya i ikh sezonnaya dinamika (Biocenoses of the Chupa Estuary of the White Sea and Their Seasonal Dynamics), Leningrad: Nauka, 1985.

    Google Scholar 

  52. Green, R.H., Growth and mortality in an arctic intertidal population of Macoma balthica (Pelecypoda, Tellinidae), J. Fish Res. Board Can., 1973, vol. 30, p. 1345.

    Article  Google Scholar 

  53. Green, M.A., Waldbusser, G.G., Reilly, S.L., et al., Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves, Limnol., Oceanogr., 2009, vol. 54, no. 4, p. 1037. https://doi.org/10.4319/lo.2009.54.4.1037

    Article  CAS  Google Scholar 

  54. Green, M.A., Waldbusser, G.G., Hubazc, L., et al., Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds, Estuaries Coasts, 2013, vol. 36, no. 1, p. 18. https://doi.org/10.1007/s12237-012-9549-0

    Article  CAS  Google Scholar 

  55. Hiddink, J.G., Hofstede, R.T., and Wollf, W.J., Predation of intertidal infauna on juveniles of the bivalve Macoma balthica, J. Sea Res., 2002, vol. 47, no. 2, p. 141. https://doi.org/10.1016/S1385-1101(02)00107-7

    Article  Google Scholar 

  56. Holland, A.F., Mountford, N.K., Hiegel, M.H., et al. Influence of predation on infaunal abundance in Upper Chesapeake Bay, USA, Mar. Biol., 1980, vol. 57, no. 3, p. 221.

    Article  Google Scholar 

  57. Honkoop, P.J.C., van der Meer, J., Beukema, J.J., and Kwast, D., Does temperature-influenced egg production predict the recruitment in the bivalve Macoma balthica?, Mar. Ecol.: Prog. Ser., 1998, vol. 164, p. 229. https://doi.org/10.3354/meps164229

    Article  Google Scholar 

  58. Hunt, H.L. and Scheibling, R.E., Role of early post-settlement mortality in recruitment of benthic marine invertebrates, Mar. Ecol.: Prog. Ser., 1997, vol. 155, p. 269. https://doi.org/10.3354/meps155269

    Article  Google Scholar 

  59. Hunt, H., Archie McLean, D., and Mullineaux, L., Post-settlement alteration of spatial patterns of soft shell clam (Mya arenaria) recruits, Estuaries Coasts, 2003, vol. 26, no. 1, p. 72. https://doi.org/10.1007/BF02691695

    Article  Google Scholar 

  60. Josefson, A.B., Regulation of population size, growth, and production of a deposit-feeding bivalve: A long-term field study of three deep-water populations off the swedish west coast, J. Exp. Mar. Biol. Ecol., 1982, vol. 59, nos. 2–3, p. 125. https://doi.org/10.1016/0022-0981(82)90111-3

    Article  Google Scholar 

  61. Kilada, R.W., Campana, S.E., and Roddick, D., Validated age, growth, and mortality estimates of the ocean quahog (Arctica islandica) in the western Atlantic, ICES J. Mar. Sci., 2007, vol. 64, no. 1, p. 31. https://doi.org/10.1093/icesjms/fsl001

    Article  Google Scholar 

  62. Kühl, H., Uber die siedlungsweise von Mya arenaria, Verhandlungen der Deutschen Zoologischen Gesellschaft, 1951, vol. 25, p. 358.

    Google Scholar 

  63. Kulakovskiy, E.E. and Flyachinskaya, L.P., Pecularities of larval development of Mytilus edulis L. Formation of elements of the regulatory system, Tr. Zool. Inst. Ross. Akad. Nauk, 1993, vol. 253, p. 61.

    Google Scholar 

  64. Kuznetsov, V.V., Beloe more i biologicheskie osobennosti ego flory i fauny (The White Sea and the Biological Features of its Flora and Fauna), Moscow: Akad. Nauk SSSR, 1960.

  65. Lisitsyna, K.N. and Gerasimova, A.V., How many years do Macoma calcarea (Gmelin) live in the White Sea: age determination by external morphology and shell cuts, 23 Mezhdunarodnaya Pushchinskaya shkola-konferentsiya molodykh uchenykh “Biologiya - Nauka XXI veka” (23 Int. Pushchino School-Conf. Young Sci. “Biology – Science of the XXI Century”), Pushchino, 2019.

  66. Lukanin, V.V. and Oshurkov, V.V., Structure of littoral settlements of mussels in Kandalaksha Bay of the White Sea, Biol. Morya, 1981, no. 5, p. 33.

  67. Lukanin, V.V., Naumov, A.D., and Fedyakov, V.V., Dynamics of Size Structure of Populations of White Sea Mussel (Mytilus edulis L.), Ekologicheskiye issledovaniya donnykh organizmov Belogo Morya (Ecological Research of Bottom Organisms of the White Sea), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1986, pp. 50–63.

    Google Scholar 

  68. Lukanin, V.V., Naumov, A.D., and Fedyakov, V.V., Mussel settlements: Constant impermanence, Priroda, 1990, no. 11, p. 56.

  69. McGrorty, S. and Goss-Custard, J.D., Population dynamics of the mussel Mytilus edulis along environmental gradients: spatial variations in density-dependent mortalities, J. Anim. Ecol., 1993, vol. 62, no. 3, p. 415.

    Article  Google Scholar 

  70. McGrorty, S., Clarke, R.T., Reading, C.J., and Goss-Custard, J.D., Population dynamics of the mussel Mytilus edulis: density changes and regulation of the population in the Exe estuary, Devon, Mar. Ecol.: Prog. Ser., 1990, vol. 67, p. 157.

    Article  Google Scholar 

  71. Murawski, S.A., Ropes, J.W., and Serchuk, F.M., Growth of the ocean quahog, Arctica islandica, in the Middle Atlantic Bight, Fish. Bull., 1982, vol. 80, p. 21.

    Google Scholar 

  72. NEFSC. 1995. Report of the 19th Northeast Regional Stock Assessment Workshop (19th SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. Woods Hole, MA: NOAA/National Marine Fisheries Service. (Northeast Fish Sci Cent Ref Doc. 95-08).

  73. Perron, F.E., Growth, fecundity, and mortality of Conus pennaceus in Hawaii, Ecology, 1983, vol. 64, no. 1, p. 53.

    Article  Google Scholar 

  74. Petelin, V.P., Granulometricheskii analiz morskikh donnykh osadkov (Granulometry of Marine Bottom Sediments), Moscow: Nauka, 1967.

  75. Petersen, G.H., Life cycles and population dynamics of marine benthic bivalves from the Disko Bugt area of West Greenland, Ophelia, 1978, vol. 17, no. 1, p. 95.

    Article  Google Scholar 

  76. Philippart, C.J.M., Aken, H.M.V., Beukema, J.J., et al., Climate-related changes in recruitment of the bivalve Macoma balthica, Limnol., Oceanogr., 2003, vol. 48, no. 6, p. 2171. https://doi.org/10.4319/lo.2003.48.6.2171

    Article  Google Scholar 

  77. Powell, E.N. and Mann, R., Evidence of recent recruitment in the ocean quahog Arctica islandica in the Mid-Atlantic Bight, J. Shellfish Res., 2005, vol. 24, p. 517.

    Article  Google Scholar 

  78. Sadykhova, I.A., Changes in the abundance and size composition of the population of Mya arenaria L. in the White Sea, Materialy 1 koordinatsionnogo soveshchaniya (mai 1982) “Povyshenie produktivnosti i ratsionalnoe ispolzovanie biologicheskikh resursov Belogo morya” (Proc. 1 Coordination Meeting “Increasing Productivity and Rational Use of Biological Resources of the White Sea”), Leningrad, 1982.

  79. Schafer, W., Ecology and Palaeoecology of marine environments, Chicago: Univ. Chicago Press, 1972.

    Google Scholar 

  80. Shklyarevich, G.A. and Shcherbakova, I.B., Long-term changes in the settlements of Mya arenaria in littoral of the Kandalaksha Bay of the White Sea, Materialy IX mezhdunarodnoi konferentsii “Problemy izucheniya, ratsionalnogo ispolzovaniya i okhrany resursov Belogo morya” (Proc. IXth Int. Conf. “The Study, Sustainable Use and Conservation of Natural Resources of the White Sea”), Petrozavodsk, 2004, pp. 327–332.

  81. Steingrimsson, S.A. and Thorarinsdottir, G.G., Age structure, growth and size at sexual maturity in ocean quahog, Arctica islandica L. (Mollusca Bivalvia), off NW-Iceland. ICES Document, 1995.

    Google Scholar 

  82. Strasser, M., Reduced epibenthic predation on intertidal bivalves after a severe winter in the European Wadden Sea, Mar. Ecol.: Prog. Ser., 2002, vol. 241, p. 113. https://doi.org/10.3354/meps241113

    Article  Google Scholar 

  83. Strasser, M. and Günther, C.-P., Larval supply of predator and prey: temporal mismatch between crabs and bivalves after a severe winter in the Wadden Sea, J. Sea Res., 2001, vol. 46, no. 1, p. 57. https://doi.org/10.1016/S1385-1101(01)00063-6

    Article  Google Scholar 

  84. Strasser, M., Reinwald, T., and Reise, K., Differential effects of the severe winter of 1995/96 on the intertidal bivalves Mytilus edulis, Cerastoderma edule and Mya arenaria in the Northern Wadden Sea, Helgoland Mar. Res., 2001, vol. 55, no. 3, p. 190. https://doi.org/10.1007/s101520100079

    Article  Google Scholar 

  85. Strasser, M., Dekker, R., Essink, K., et al., How predictable is high bivalve recruitment in the Wadden Sea after a severe winter?, J. Sea Res., 2003, vol. 49, no. 1, p. 47. https://doi.org/10.1016/S1385-1101(02)00198-3

    Article  Google Scholar 

  86. Sveshnikov, V.A., Biocenotic relationships and conditions for the existence of some food invertebrates of the littoral infauna of the Kandalaksha Bay of the White Sea, Tr. Kandalakshskogo Zapoved., 1963, vol. 4, p. 114.

    Google Scholar 

  87. Weinberg, J.R., Factors regulating population dynamics of the marine bivalve Gemma gemma: intraspecific competition and salinity, Mar. Biol., 1985, vol. 86, no. 2, p. 173.

    Article  Google Scholar 

  88. Yap, W.G., Population biology of the Japanese Little-neck Clam, Tapes philippinarum, in Kaneohe Bay, Oahu, Hawaiian Islands, Pac. Sci., 1977, vol. 31, no. 3, p. 223.

    Google Scholar 

  89. Yusuf, F., Martins, J.M., and Swanson, D., Life tables, in Methods of Demographic Analysis, Netherlands: Springer-Verlag, 2014, p. 143.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank all students and staff of the Department of Ichthyology and Hydrobiology at St. Petersburg State University for assistance in conducting this study, the leadership of the Belomorskaya Educational and Research Station (the village of Chupa, Karelia) for the opportunity to collect material, and the staff at the Zoological Institute of the Russian Academy of Sciences for data on the long-term dynamics of hydrological characteristics in the Chupa Inlet.

Funding

This work was supported by a grant from the Russian Foundation for Basic Research Arctica “3. Secular Changes in the Bottom Ecosystems of the Arctic Seas of Russia, Current State and Forecast,” no. 18-05-60157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gerasimova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Dedicated to the 300th anniversary of St. Petersburg State University

Translated by V. Mittova

Abbreviations: ML is the middle littoral zone; LL is the lower littoral zone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimova, A.V., Maximovich, N.V. & Filippova, N.A. Mortality and Survival in Marine Bivalve Beds under Undisturbed Environmental Conditions (in the White Sea). Inland Water Biol 15, 875–890 (2022). https://doi.org/10.1134/S1995082922060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082922060050

Keywords:

Navigation