Skip to main content
Log in

Efficiency of Transfer of Essential Substances from Phytoplankton to Planktonic Crustaceans in Mesotrophic Lake Obsterno (Belarus)

  • ZOOPLANKTON, ZOOBENTHOS, ZOOPERIPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The efficiency of transfer of essential substances (carbon, phosphorus, nitrogen, and fatty acids (FAs), including polyunsaturated fatty acids (PUFAs)) from phytoplankton to zooplankton in three habitats (pelagic zone and vegetated and unvegetated littoral areas) in mesotrophic Lake Obsterno (Belarus) has been assessed. The efficiency of transfer of substances was calculated as the ratio of their secondary production to primary production per water volume unit and biomass unit. The efficiency per water volume unit can characterize the efficiency of transferring substances in a lake, while the efficiency per biomass unit indicates the ability of zooplankton to accumulate essential substances consumed with the food resources in biomass, i.e. it characterizes the quality of zooplankton as a resource for higher trophic levels. The efficiency of PUFA transfer was lower than the carbon transfer efficiency. On the contrary, the accumulation of nutrients, especially phosphorus, was more effective when compared with the carbon accumulation rate. This indicates that zooplankton serve as a sink for nutrients which are transferred up the trophic webs. The plankton communities in the pelagic zone of mesotrophic lake were found to be more effective in transferring the substances from the primary producers to the consumers than the littoral communities were.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alimov, A.F., Vvedenie v produktsionnuyu gidrobiologiyu (An Introduction to Production Hydrobiology), Leningrad: Gidrometeoizdat, 1989.

  2. Balushkina, E.V. and Winberg, G.G., The relationship between the length and body weight of planktonic crustaceans and rotifers, in Ekologo-fiziologicheskie osnovy izucheniya vodnykh ekosistem (Ecological and Physiological Principles of the Study of Aquatic Ecosystems), Leningrad: Nauka, 1979, p. 169.

  3. Becker, C. and Boersma, M., Differential effects of phosphorus and fatty acids on daphnia magna growth and reproduction, Limnol. Oceanogr., 2005, vol. 50, p. 388.

    Article  CAS  Google Scholar 

  4. Blue Book of Belarus, Minsk: Bel. En., 1994.

  5. Boersma, M., Schops, C., and McCauley, E., Nutritional quality of seston for the freshwater herbivore Daphnia galeatahyalina: biochemical versus mineral limitation, Oecologia, 2001, vol. 129, p. 342.

    Article  Google Scholar 

  6. Buseva, Zh. and Pljuta, M., Feeding of YOY fish in littoral zone of shallow lake, Proc. Natl. Acad. Sci. Bel., 2015, vol. 59, no. 3, p. 71.

    Google Scholar 

  7. DeMott, W.R., Utilization of a cyanobacterium and a phosphorus-deficient green alga as a complementary resource by daphnids, Ecology, 1998, vol. 79, p. 2463.

    Article  Google Scholar 

  8. DeMott, W.R., Gulati, R.D., and Siewertsen, K., Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna, Limnol., Oceanogr., 1998, vol. 43, p. 1147.

    Article  CAS  Google Scholar 

  9. Dickman, E.M., Newell, J.M., Gonzalez, M.J., and Vanni, M.J., Light, nutrients, and food chain length constrain planktonic energy transfer efficiency across multiple trophic levels, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, p. 18408. https://doi.org/10.1073/pnas.0805566105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Elser, J.J., Kyle, M., Frost, P., et al., Effects of light and nutrients on plankton stoichiometry and biomass in a P-limited lake, Hydrobiologia, 2002, vol. 481, p. 101.

    Article  Google Scholar 

  11. Feller, S.E., Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids, Chem. Phys. Lipids, 2008, vol. 153, p. 76. https://doi.org/10.1016/j.chemphyslip.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Gladyshev, M.I., Kolmakov, V.I., Dubovskaya, O.P., and Ivanova, E.A., The microalgal food spectrum of Daphnia longispina during the algal bloom of an eutrophic water body, Dokl. Biol. Sci., 2000, vol. 371, p. 179.

    CAS  PubMed  Google Scholar 

  13. Gladyshev, M.I., Sushchik, N.N., Dubovskaya, O.P., et al., Influence of sestonic elemental and essential fatty acid contents in a eutrophic reservoir in Siberia on population growth of Daphnia (longispina group), J. Plankton Res., 2006, vol. 28, no. 10, p. 907. https://doi.org/10.1093/plankt/fbl028

    Article  CAS  Google Scholar 

  14. Gladyshev, M.I., Sushchik, N.N., Kolmakova, A.A., et al., Seasonal correlations of elemental and v-3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian reservoir, Aquat. Ecol., 2007, vol. 41, p. 9. https://doi.org/10.1007/s10452-006-9040-8

    Article  CAS  Google Scholar 

  15. Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., et al., Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir, Oecologia, 2011, vol. 165, p. 521. https://doi.org/10.1007/s00442-010-1843-6

    Article  PubMed  Google Scholar 

  16. Glencross, B.E., Exploring the nutritional demand for essential fatty acids by aquaculture species, Rev. Aquacult., 2009, vol. 1, no. 2, pp. 71–124. https://doi.org/10.1111/j.1753-5131.2009.01006.x

    Article  Google Scholar 

  17. Gulati, R.D. and DeMott, W.R., The role of food quality for zooplankton: remarks on the state -of-the-art, perspectives and priorities, Freshwater Biol., 1997, vol. 38, no. 3, p. 753. https://doi.org/10.1046/j.1365-2427.1997.00275.x

    Article  Google Scholar 

  18. Kalachova, G.S., Gladyshev, M.I., Sushchik, N.N., and Makhutova, O.N., Water moss as a food item of the zoobenthos in the Yenisei River, Centr. Eur. J. Biol., 2011, vol. 6, p. 236. https://doi.org/10.2478/s11535-010-0115-0

    Article  Google Scholar 

  19. Karpowicz, M., Feniova, I., Gladyshev, M.I., et al., The stoichiometric ratios (C:N:P) in a pelagic food web under experimental conditions, Limnologica, 2019, vol. 77, p. 125690. https://doi.org/10.1016/j.limno.2019.125690

    Article  CAS  Google Scholar 

  20. Lacroix, G., Biomass and production of plankton in shallow and deep lakes: are there general patterns? Ann. Limnol., 1999, vol. 35, no. 2, p. 111.

    Article  Google Scholar 

  21. Lindeman, R.L., The trophic-dynamic aspect of ecology, Ecology, 1942 vol. 23, p. 399.

    Article  Google Scholar 

  22. Loladze, I. and Elser, J.J., The origins of the red-field nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio, Ecol. Lett., 2011, vol. 14, p. 244. https://doi.org/10.1111/j.1461-0248.2010.01577.x

    Article  PubMed  Google Scholar 

  23. Mikheeva, T.M., Methods of quantitative estimates of nanophytoplankton (review), Hydrobiol. J., 1989, vol. 25, p. 3.

    Google Scholar 

  24. Mikheeva, T.M., Algal flora of Belarus, in Taksonomicheskii katalog (Taxonomic Catalogue), Minsk: Bel. Gos. Univ., 1999.

  25. Mikheeva, T.M., Assessment of the production capabilities of a unit of phytoplankton biomass, in Biologicheskaya produktivnost' evtrofnogo ozera (Biological Productivity of an Eutrophic Lake), Moscow: Nauka, 1970, p. 50.

  26. Müller-Navarra, D.C., Biochemical versus mineral limitation in Daphnia, Limnol. Oceanogr., 1995, vol. 40, p. 1209.

    Article  Google Scholar 

  27. Murphy, J. and Riley, J.P., A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 1962, vol. 27, p. 31.

    Article  CAS  Google Scholar 

  28. Schmitz, G. and Ecker, J., The opposing effects of n-3 and n-6 fatty acids, Prog. Lipid Res., 2008, vol. 47, p. 147. https://doi.org/10.1016/j.plipres.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  29. Slobodkin, L.B., On the inconstancy of ecological efficiency and the form of ecological theories, in Growth by Intussusception: Ecological Essays in Honor of G.E. Hutchinson, New Haven: Trans. Conn. Acad. Arts Sci., 1972, vol. 44, p. 291.

    Google Scholar 

  30. Sommer, U. and Sommer, F., Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton, Oecologia, 2006, vol. 147, p. 183. https://doi.org/10.1007/s00442-005-0320-0

    Article  PubMed  Google Scholar 

  31. Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A., The peg-model of a seasonal succession of planktonic events in fresh waters, Arch. Hydrobiol., 1986, vol. 106, p. 433.

    Google Scholar 

  32. Sterner, R.W., Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton, Ecology, 1993, vol. 74, p. 2351.

    Article  Google Scholar 

  33. Sterner, R.W., Modelling interactions of food quality and quantity in homeostatic consumers, Freshwater Biol., 1997, vol. 38, pp. 473–481. https://doi.org/10.1046/j.1365-2427.1997.00234.x

    Article  Google Scholar 

  34. Sterner, R.W. and Elser, J.J., Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere, New York: Princeton Univ. Press, 2002.

    Google Scholar 

  35. Sterner, R.W. and Schulz, K.L., Zooplankton nutrition: recent progress and a reality check, Aquat. Ecol., 1998, vol. 32, p. 261.

    Article  Google Scholar 

  36. Sterner, R.W., Clasen, J., Lampert, W., and Weisse, T., Carbon: phosphorus stoichiometry and food chain production, Ecol. Lett., 1998, vol. 1, p. 146. https://doi.org/10.1046/j.1461-0248.1998.00030.x

    Article  Google Scholar 

  37. Stockwell, J.D. and Johannsson, O.E., Temperature-dependent allometric models to estimate zooplankton production in temperate freshwater lakes, Can. J. Fish. Aquat. Sci., 1997, no. 54, p. 2350. https://doi.org/10.1139/f97-141

  38. Taipale, S.J., Kainz, M.J., and Brett, M.T., Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia, Oikos, 2011, vol. 120, p. 1674. https://doi.org/10.1111/j.1600-0706.2011.19415.x

    Article  Google Scholar 

  39. Wacker, A. and Von Elert, E., Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata, Ecology, 2001, vol. 82, p. 2507.

    Article  Google Scholar 

  40. Wagner, N.D., Lankadurai, B.P., Simpson, M.J., et al., Metabolomic differentiation of nutritional stress in an aquatic invertebrate, Physiol. Biochem. Zool., 2015, vol. 88, p. 43. https://doi.org/10.1086/679637

    Article  PubMed  Google Scholar 

  41. Wassell, S.R. and Stillwell, W., docosahexaenoic acid domains: the ultimate non-raft membrane domain, Chem. Phys. Lipids, 2008, vol. 153, p. 57. https://doi.org/10.1016/j.chemphyslip.2008.02.010

    Article  CAS  Google Scholar 

  42. Winberg, G.G. and Lavrenteva, G.M., Guidelines for the collection and processing of materials for hydrobiological studies in freshwater bodies, in Fitoplankton i ego produktsiya (Phytoplankton and Its Products), Leningrad: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1982, p. 1.

  43. White, T.C.R., The Inadequate Environment, Berlin: Springer, 1993.

    Book  Google Scholar 

  44. Yacobi, Y.Z. and Zohary, T., Carbon: chlorophyll a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton, Hydrobiologia, 2010 vol. 639, p. 185. https://doi.org/10.1007/s10750-009-0023-3

    Article  CAS  Google Scholar 

Download references

Funding

The collection, treatment, and analysis of the phytoplankton and zooplankton samples were funded by the Belarusian Republican Foundation for Fundamental Research (BRFFI), project no. B18R-004; seston collection and treatment for the elemental composition were performed as part of BRFFI grant no. B17-037. The interpretation of results, literature reviews, and manuscript preparation for publishing were supported by the Russian Foundation for Basic Research, project no. 18-54-00002Bel_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. F. Buseva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement of welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by O. Zhiryakova

Abbreviations: Bphyto—phytoplankton biomass; Bzoo—raw zooplankton biomass; SPzoo—secondary production of crustaceans; DHA—dokozahexaenoic acids; FA—fatty acids; PUFA—polyunsaturated fatty acids; PP—primary production; EPA—ecosapentaenoic acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buseva, Z.F., Gladyshev, M.I., Sushchik, N.N. et al. Efficiency of Transfer of Essential Substances from Phytoplankton to Planktonic Crustaceans in Mesotrophic Lake Obsterno (Belarus). Inland Water Biol 14, 391–400 (2021). https://doi.org/10.1134/S1995082921030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082921030032

Keywords:

Navigation