Skip to main content
Log in

Effect of Viral Infection on the Functioning and Lysis of Black Sea Microalgae Tetraselmis viridis (Chlorophyta) and Phaeodactylum tricornutum (Bacillariophyta)

  • PHYTOPLANKTON, PHYTOBENTHOS, AND PHYTOPERIPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Experimental studies have been performed on Tetraselmis viridis (Rouchijajnen) R.E. Norris, Hori & Chihara (Chlorophyta) and Phaeodactylum tricornutum Bohlin (Bacillariophyta) cultures of Black Sea microalgae using TsV-S1 and PtV-S18 algal virus strains isolated from the Black Sea ecosystem. The study assesses the effects of light intensity and the initial abundance of microalgae cells on the onset of their infection by viruses and the decline in their abundance. As early as on the second or third day, the cells changed their shape and increased in volume in the cultures infected by viruses. At this time, a decrease was observed in chlorophyll a red autofluorescence, variable fluorescence per cell, and photochemical efficiency of photosystem 2. In the studied cultures, a reduction in cell abundance due to viral lysis was noted 1 to 2 days later. The threshold cell abundance at which this process was observed was independent of light conditions and amounted to 3 × 105 cells/mL for T. viridis and 18 × 105 cells/mL for Ph. tricornutum. The complete lysis of algae cells was detected by the end of the fourth to sixth day. In the dark, the effect of viruses on microalgae was insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Baudoux, A., Noordeloos, A., Veldhuis, M., and Brussaard, C., Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters, Aquat. Microb. Ecol., 2006, vol. 44, p. 207. https://doi.org/10.3354/ame044207

  2. Baudoux, A.C., Veldhuis, M.J.W., Noordeloos, A.A.M., et al., Estimates of virus-vs. grazing, induced mortality of picophytoplankton in the north sea during summer, Aquat. Microb. Ecol., 2008, vol. 52, p. 69. https://doi.org/10.3354/ame01207

    Article  Google Scholar 

  3. Beckett, S.J. and Weitz, J.S., The effect of strain level diversity on robust inference of virus-induced mortality of phytoplankton, Front. Microbiol., 2018, vol. 9, p. 1850. https://doi.org/10.3389/fmicb.2018.01850

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bidle, K.D., Haramaty, L., Barcelos e Ramos, J., and Falkowski, P., Viral activation and recruitment of metacaspases in the unicellular coccolithophore Emiliania huxleyi,Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 14, p. 6049. https://doi.org/10.1073/pnas.0701240104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bratbak, G., Heldal, M., and Egge, J.K., Termination of algal blooms: viral mortality of the marine coccolithophorid Emiliania huxleyi,Mar. Ecol.: Proc. Ser., 1993, vol. 93, p. 39. https://doi.org/10.3354/meps093039

    Article  Google Scholar 

  6. Bratbak, G., Wilson, W., and Heldal, M., Viral control of Emiliania huxleyi blooms?, J. Mar. Syst., 1996, vol. 9, nos. 1–2, p. 75. https://doi.org/10.1016/0924-7963(96)00018-8

    Article  Google Scholar 

  7. Cottrell, M.T. and Suttle, C.A., Dynamics of a lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla,Limnol., Oceanogr., 1995, vol. 40, p. 730. https://doi.org/10.4319/lo.1995.40.4.0730

    Article  Google Scholar 

  8. Evans, C.S., Arscher, S.D., Jacquet, S., and Wilson, W.Y., Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population, Aquat. Microb. Ecol., 2003, vol. 30, p. 207. https://doi.org/10.3354/ame030207

    Article  Google Scholar 

  9. Guillard, R.R.L. and Ryther, J.H., Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve, Can. J. Microbiol., 1962, vol. 8, p. 229.

    Article  CAS  Google Scholar 

  10. Horas, E.L., Theodosiou, L., and Becks, L., Why are algal viruses not always successful?, Viruses, 2018, vol. 10, no. 9, p. 474. https://doi.org/10.3390/v10090474

    Article  CAS  PubMed Central  Google Scholar 

  11. Kim, J.J., Yoon, S.H., and Choi, T.J., Isolation and physiological characterization of a novel virus infecting Stephanopyxis palmeriana (Bacillariophyta), Algae, 2015, vol. 30, no. 2, p. 81. https://doi.org/10.4490/algae.2015.30.2.081

    Article  CAS  Google Scholar 

  12. Kimura, K. and Tomaru, Yu., Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom, Appl. Environ. Microbiol., 2015, vol. 81, p. 1120. https://doi.org/10.1128/AEM.02380-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehahn, Y., Koren, I., Schatz, D., et al., Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom, Curr. Biol., 2014, vol. 24, p. 2041. https://doi.org/10.1016/j.cub.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  14. Mojica, K.D.A., Huisman, J., Wilhelm, S.W., and Brussaard, C.P.D., Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean, ISME J., 2016, vol. 10, p. 500. https://doi.org/10.1038/ismej.2015.130

    Article  CAS  PubMed  Google Scholar 

  15. Pagarete, A., Grebert, T., Stepanova, O., et al., Tsv-N1: a novel DNA algal virus that infects Tetraselmis striata,Viruses, 2015, vol. 7, p. 3937. https://doi.org/10.3390

    Article  CAS  Google Scholar 

  16. Parsons, T.R., Takakhashi, M., and Khargreiv, B., Biologicheskaya okeanografiya (Biological Oceanography), Moscow: Legk. Pishch. Prom-st’, 1982.

  17. Pasulka, A.L., Samo TY, J., and Landry, M.L., Grazer and viral impacts on microbial growth and mortality in the Southern California current ecosystem, J. Plankton Res., 2015, vol. 37, no. 2, p. 320. https://doi.org/10.1093/plankt/fbv011

    Article  CAS  Google Scholar 

  18. Pogosyan, S.I., Gal’chuk, S.V., Kazimirko, Yu.V., et al., Application of Mega 25 fluorometer to determine the amount of phytoplankton and assess the state of its photosynthetic apparatus, Voda: Khim. Ekol., 2009, no. 2, p. 34.

  19. Stepanova, O.A., Black Sea algal viruses, Russ. J. Mar. Biol., 2016, vol. 42, no. 2, p. 99. https://doi.org/10.1134/S1063074016020103

    Article  Google Scholar 

  20. Stepanova, O.A., Interaction between algal viruses and the mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalvia: Mytilidae) in experiment, Russ. J. Mar. Biol., 2017, vol. 43, no. 2, p. 127. https://doi.org/10.1134/S1063074017020110

    Article  Google Scholar 

  21. Suttle, C.A., Marine viruses: major players in the global ecosystem, Nat. Rev. Microbiol., 2007, vol. 5, p. 801. https://doi.org/10.1038/nrmicro1750

    Article  CAS  PubMed  Google Scholar 

  22. Suttle, C.A., Chan, A.M., and Cottrell, M.T., Infection of phytoplankton by viruses and reduction of primary productivity, Nature, 1990, vol. 347, p. 467.

    Article  Google Scholar 

  23. Tsilinsky, V.S., Suslin, V.V., and Finenko, Z.Z., Seasonal dynamics of the phytoplankton photosynthetic apparatus efficiency in Black Sea coastal regions, Oceanology, 2018, vol. 58, no. 4, p. 550. https://doi.org/10.1134/S0001437018040112

    Article  Google Scholar 

  24. Vardi, A., Van Mooy, B.A.S., Fredricks, H.F., et al., Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton, Science, 2009, vol. 326, p. 861. https://doi.org/10.1126/science.1177322

    Article  CAS  PubMed  Google Scholar 

  25. Wommack, K.E. and Colwell, R.R., virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 1, p. 69. https://doi.org/10.1128/MMBR.64.1.69-114.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported as part of the work procured by the government from Federal Research Center Kovalevskii Institute for Biology of Southern Seas of the Russian Academy of Sciences, project no. AAAA-A18-118021490093-4 “Functional, Metabolic, and Toxicological Aspects of Occurrence of Hydrobionts and Their Populations in Biotopes with Different Physicochemical Regimes,” as well government-funded project no. 0012–2019–0003 “Development of the New Tools and Measuring Information Technologies for Natural Water Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Stelmakh.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Kuznetsova

Abbreviation: F0/cell – the initial level of variable fluorescence; Fv/Fm – photochemical efficiency of photosystem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelmakh, L.V., Stepanova, O.A. Effect of Viral Infection on the Functioning and Lysis of Black Sea Microalgae Tetraselmis viridis (Chlorophyta) and Phaeodactylum tricornutum (Bacillariophyta). Inland Water Biol 13, 417–424 (2020). https://doi.org/10.1134/S1995082920020303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920020303

Keywords:

Navigation