Skip to main content
Log in

Effect of NaCl on Photosynthetic Parameters and Structural Components of Membranes in Macrophyte Hydrilla verticillata (L.f.) Royle

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The effect of different concentrations of NaCl on photosynthetic parameters and structural components of membranes of Hydrilla verticillata has been studied. The effect of NaCl in the concentration range of 5–10 g/L for 24 h leads to an increase in photosynthesis, pigment content, and lipid component rearrangement. A negative effect on membrane permeability and photosynthesis is observed under the action of NaCl at a concentration of 20 g/L. A decrease in the relative content of monogalactosyldiacylglycerol and an increase in digalactosyldiacylglycerol and sulfolipid are found in glycolipids. In the fraction of phospholipids, the relative content of phosphatidyl -choline, -ethanolamine, -inositol decreases and the contribution of phosphatidylglycerol increases with increasing NaCl concentration. Changes in the sterol component of membranes are associated with a decrease in the concentration of stigmasterol and increase in β-sitosterol. Adaptive rearrangements in the composition of pigments and membrane structure indicate a high functional activity of the photosynthetic apparatus of H. verticillata, which allows this species to achieve stability in saline ecotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Valitova, Yu.N., Kotlova, E.R., Novikov, A.V., Shavarda, A.L., Artemenko, K.A., Zubarev, R.A., and Minibayeva, F.V., Binding of sterols affects membrane functioning and sphingolipid composition in wheat roots, Biochemistry (Moscow), 2010, vol. 75, no. 5, pp. 554–561.

    CAS  PubMed  Google Scholar 

  2. Gavrilenko, V.F. and Zhigalova, T.V., Bol’shoi praktikum po fotosintezu (An Extended Practical Course in Photosynthesis), Moscow: Akademiya, 2003.

  3. Grishenkova, A.S. and Lukatkin, N.N., Determination of plant tissue resistance to abiotic stresses using conductometric method, Povolzh. Ekol. Zh., 2005, no. 1, pp. 3–11.

  4. Grishchenko, L.I., Akbaev, M.Sh., and Vasil’kov, G.V., Bolezni ryb i osnovy rybolovstva (Fish Diseases and Basics of Fishing), Moscow: Kolos, 1999.

  5. Kovda, V.A., Problemy opustynivaniya pochv aridnykh regionov mira (Soil Desertification Problems in Arid Regions of the World), Moscow: Nauka, 2008.

  6. Matveev, V.I., Solov’eva, V.V., and Saksonov, S.V., Ekologiya vodnykh rastenii (Ecology of Aquatic Plants), Samara: Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2005.

  7. Nesterov, V.N., Rozentsvet, O.A., and Bogdanova, E.S., Effect of abiotic factors of the fatty acid composition of Ulva intestinalis, Sib. Ekol. Zh., 2013, no. 4, pp. 587–594.

  8. Nesterov, V.N., Rozentsvet, O.A., and Murzaeva, S.V., Changes in lipid composition in the tissues of fresh-water plant Hydrilla verticillata induced by accumulation and elimination of heavy metals, Russ. J. Plant Physiol., 2009, vol. 56, no. 1, pp. 85–93.

    Article  CAS  Google Scholar 

  9. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Structural, physiological, and biochemical aspects of salinity tolerance of halophytes, Russ. J. Plant Physiol., 2017, vol. 64, no. 4, pp. 464–477.

    Article  CAS  Google Scholar 

  10. Al-Hasan, R.H., Ali, A.M., Ka’wash, H.H., and Radwan, S.S., Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture, J. Appl. Phycol., 1990, vol. 2, pp. 215–222.

    Article  Google Scholar 

  11. Bowes, G., Single-cell C4 photosynthesis in aquatic plants, in C4 Photosynthesis and Related CO 2 Concentrating Mechanisms, Dordrecht; Netherlands: Springer, 2011, pp. 63–80.

    Google Scholar 

  12. Chen, V., Zhang, L.-L., Tuo, Y.-C., et al., Treatability thresholds for cadmium-contaminated water in the wetland macrophyte Hydrilla verticillata (L.f.) Royle, Ecol. Eng., 2016, vol. 96, pp. 178–186.

    Article  Google Scholar 

  13. Dogan, M., Demirors saygideger s. physiological effects of NaCl on Ceratophyllum demersum L., a submerged rootless aquatic macrophyte, Iran. J. Fish. Sci., 2018, vol. 17, pp. 346–356.

    Google Scholar 

  14. Kobayashi, I.K., Endo, K., and Wada, H., Roles of lipids in photosynthesis, in Lipids in Plant and Algae Development. Switzerland: Springer Int. Publ., 2016, pp. 21–49.

    Google Scholar 

  15. Kumar, J.I.N., Soni, H., Kumar, R.N., and Bhatt, I., Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat, India, Turk. J. Fish. Aquat. Sci., 2008, vol. 8, pp. 193–200.

    Google Scholar 

  16. Leegood, R.C., C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants, J. Exp. Bot., 2002, vol. 53, pp. 581–590.

    Article  CAS  PubMed  Google Scholar 

  17. Lichtenthaler, K. and Welburn, A.R., Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 11, pp. 591–592.

    Article  CAS  Google Scholar 

  18. Madeira, P.T., Jacono, C.C., and Van, T.K., Monitoring Hydrilla using two RAPD procedures and the nonindigenous aquatic species database, J. Aquat. Plant Manage., 2000, vol. 38, pp. 33–40.

    Google Scholar 

  19. True-Meadows, S., Haug, E.J., and Richardson, R.J., Monoecious Hydrilla—a review of the literature, J. Aquat. Plant Manage., 2016, vol. 54, pp. 1–11.

    Google Scholar 

  20. Twilley, R.R. and Barko, J.W., The growth of submersed macrophytes under experimental salinity and light conditions, Estuaries, 1990, vol. 13, pp. 311–321.

    Article  Google Scholar 

  21. Upadhyay, R.K. and Panda, S.K., Salt tolerance of two aquatic macrophytes, Pistia stratiotes and Salvinia molesta, Biol. Plantar., 2005, vol. 49, pp. 157–159.

    Article  Google Scholar 

  22. Xu, X.-Q. and Beardall, J., Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake, Phytochemistry, 1997, vol. 45, pp. 655–658.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the state program Ecological Regularities of the Sustainable Functioning of Ecosystems and the Resource Potential of the Volga Basin” AAAA-A17-117112040039-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rozentsvet.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any research using animals as objects.

Additional information

Translated by S. Avodkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S. et al. Effect of NaCl on Photosynthetic Parameters and Structural Components of Membranes in Macrophyte Hydrilla verticillata (L.f.) Royle. Inland Water Biol 12, 326–332 (2019). https://doi.org/10.1134/S1995082919030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082919030131

Keywords:

Navigation