Skip to main content
Log in

Effect of Roundup Herbicide on the Temperature Characteristics of Maltase of the Intestinal Mucosa in Juvenile Fish

  • AQUATIC TOXICOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The in vitro effect of Roundup herbicide at a concentration of 25 μg/L on the activity and temperature characteristics (temperature dependence, activation energy Eact, and Q10 temperature coefficient) of maltase in the intestinal mucosa of the juvenile sander, perch, roach, and common carp has been studied. The magnitude and direction of the effect depends on the fish species and the incubation temperature. Roundup does not affect the temperature optimum for maltase (60°C for perch and sander; 50°C for roach and carp). The lower relative activity of the enzyme in the temperature range of 0–30°C indicates a decrease in the efficiency of maltose hydrolysis, while lower Eact values indicate adaptive changes in this parameter in the presence of Roundup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Brezhnev, V.I., Mechanical method of weed control on open drainage canals with the herbicide Roundup, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Novocherkassk, 2004.

  2. Golovanova, I.L. and Aminov, A.I., Influence of the herbicide Roundup on the activity of glycosidases in juvenile fishes and their food items at various temperatures and pH, Vestn. Astrakhan. Gos. Tekh. Univ., Ser. Rybn. Khoz., 2013, no. 1, pp. 129–134.

  3. Golovanova, I.L. and Golovanov, V.K., Digestive glucosidases of fishes under conditions of increased ambient temperature (review), Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2015, no. 72 (75), pp. 52–59.

  4. Golovanova, I.L. and Filippov, A.A., Characteristics of intestinal glycosidases of bream Abramis brama (L.) from Rybinsk Reservoir regions with different anthropogenic pressure, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2012, no. 2, pp. 63–69.

  5. Zhidenko, A.A., Mishchenko, T.V., and Krivopisha, V.V., Response of cyprinid fishes to glyphosate, Nauk. Zap. Ternop. Nats. Pedagog. Univ., Ser. Biol., 2015, vol. 64, no. 3–4, pp. 227–230.

    Google Scholar 

  6. Kuz’mina, V.V., Fiziologo-biokhimicheskie osnovy ekzotrofii ryb (Physiological and Biochemical Basics of Fish Exotrophy), Moscow: Nauka, 2005.

  7. Ponomarev, V.I., Characteristics of digestive processes in fishes of the European North, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Syktyvkar, 1993.

  8. Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptations in Fishes), St. Petersburg: Gidrometeoizdat, 1993.

  9. Aparicio, V.C., De Geronimo, E., Marino, D., et al., Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins, Chemosphere, 2013, vol. 93, no. 9, pp. 1866–1873.

    Article  CAS  PubMed  Google Scholar 

  10. Benbrook, C.M., Trends in glyphosate herbicide use in the United States and globally, Environ. Sci. Eur., 2016, vol. 28, no. 3, pp. 1–15.

    Article  CAS  Google Scholar 

  11. Cattaneo, R., Clasen, B., Loro, V.L., et al., Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate, Bull. Environ. Contam. Toxicol., 2011, vol. 87, no. 6, pp. 597–602.

    Article  CAS  PubMed  Google Scholar 

  12. Fan, J.Y., Geng, J.J., Ren, H.Q., et al., Herbicide roundup and its constituents cause oxidative stress and inhibit acetylcholinesterase in liver of Carassius auratus, J. Environ. Sci. Health Part B, 2013, vol. 48, pp. 844–850.

    Article  CAS  Google Scholar 

  13. Filho, J.D.S., Sousa, C.C.N., Da, SilvaC.C., et al., Mutagenicity and genotoxicity in gill erythrocyte cells of Poecilia reticulata exposed to a glyphosate formulation, Bull. Environ. Contam. Toxicol., 2013, vol. 91, pp. 583–587.

    Article  CAS  Google Scholar 

  14. Gasiner, C., Dumont, C., Benachour, N., et al., Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines, Toxicology, 2009, vol. 262, pp. 184–191.

    Article  CAS  Google Scholar 

  15. Gelman, A.G., Kuz’mina, V.V., Drabkin, V., and Gladman, M., Temperature adaptations of fish digestive enzymes, in Feeding and Digestive Functions in Fishes, Enfield (NF), Jersey: Sci. Publ., 2008, pp. 155–226.

    Google Scholar 

  16. Giesy, J.P., Dobson, S., and Solomon, K.R., Ecotoxicological risk assessment for roundup herbicide, Rev. Environ. Contam. Toxicol., 2000, vol. 167, pp. 35–120.

    CAS  Google Scholar 

  17. Kier, L.D. and Kirkland, D.J., Review of genotoxicity studies of glyphosate and glyphosate-based formulations, Crit. Rev. Toxicol., 2013, vol. 43, no. 4, pp. 283–315.

    Article  CAS  PubMed  Google Scholar 

  18. Kuz’mina, V.V., Digestion in fish. A new view. Balty: LAP Lambert Acad. Publ., 2017, p. 310.

  19. Le Mer, C., Roy, R.L., Pellerin, J., et al., Effects of chronic exposures to the herbicides atrazine and glyphosate to larvae of the three-spine stickleback (Gasterosteus aculeatus), Ecotoxicol. Environ. Saf., 2013, vol. 89, pp. 174–181.

    Article  CAS  PubMed  Google Scholar 

  20. Lushchak, O.V., Kubrak, O.I., Storey, J.M., et al., Low toxic herbicide roundup induces mild oxidative stress in gold fish tissues, Chemosphere, 2009, vol. 52, no. 7, pp. 932–937.

    Article  CAS  Google Scholar 

  21. Struger, J., Thompson, D., Staznik, B., et al., Occurrence of glyphosate in surface waters of southern Ontario, Bull. Environ. Contam. Toxicol., 2008, vol. 80, pp. 378–384.

    Article  CAS  PubMed  Google Scholar 

  22. Tsui, M.T.K. and Chu, L.M., Environmental fate and non-target impact of glyphosate-based herbicide (roundup) in a subtropical wetland, Chemosphere, 2008, vol. 71, pp. 439–446.

    Article  CAS  PubMed  Google Scholar 

  23. Vera, M.S., Fiori, E.D., Lagomarsino, L., et al., Direct and indirect effects of the glyphosate formulation glifosato atanor on freshwater microbial communities, Ecotoxicology, 2012, vol. 21, no. 7, pp. 1805–1816.

    Article  CAS  PubMed  Google Scholar 

  24. Webster, T.M.U. and Santos, E.M., Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and roundup, BMC Genomics, 2015, vol. 16, no. 32, pp. 1–14.

    Article  CAS  Google Scholar 

  25. Williams, G.M., Kroes, R., and Munro, I.C., Safety evaluation and risk assessment of herbicide roundup and its active ingredient, glyphosate, for humans, Reg. Toxicol. Pharmacol., 2000, vol. 31, pp. 117–165.

    Article  CAS  Google Scholar 

  26. World Health Organization (WHO), Environmental health criteria 159—Glyphosate, International Programme on Chemical Safety, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Golovanova.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.A., Golovanova, I.L. & Smirnov, M.S. Effect of Roundup Herbicide on the Temperature Characteristics of Maltase of the Intestinal Mucosa in Juvenile Fish. Inland Water Biol 12, 248–253 (2019). https://doi.org/10.1134/S1995082919020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082919020056

Keywords:

Navigation