Skip to main content
Log in

Convergence Conditions for the Quantum Relative Entropy and Other Applications of the Deneralized Quantum Dini Lemma

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe a generalized version of the result called quantum Dini lemma that was used previously for analysis of local continuity of basic correlation and entanglement measures. The generalization consists in considering sequences of functions instead of a single function. It allows to expand the scope of possible applications of the method. We prove two general dominated convergence theorems and the theorem about preserving local continuity under convex mixtures. By using these theorems we obtain several convergence conditions for the quantum relative entropy and for the mutual information of a quantum channel considered as a function of a pair (channel, input state).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The support \(\text{supp}\rho\) of a state \(\rho\) is the closed subspace spanned by the eigenvectors of \(\rho\) corresponding to its positive eigenvalues.

  2. See the remark after formula (83) in [1] how to avoid the ambiguity of the definition of \(P_{m}^{\rho}\) associated with multiple eigenvalues.

  3. It means that \(\Phi_{n}(\rho)\) tends to \(\Phi_{0}(\rho)\) for any state \(\rho\) in \(\mathfrak{S}(\mathcal{H}_{A})\) [15, 16].

  4. See the remark after formula (83) in [1] how to avoid the ambiguity of the definition of \(P_{\widehat{m}(\rho)}^{\sigma}\) associated with multiple eigenvalues.

  5. If the extended von Neumann entropy of the operators \(\rho\) and \(\sigma\) is finite then inequalities (69) and (70) follow, due to representation (71), from the inequalities in (4). In the general case these inequalities can be proved by approximation using Lemma 4 in [3].

  6. It means that \(\Phi_{n}(\rho)\) tends to \(\Phi_{0}(\rho)\) for any state \(\rho\) in \(\mathfrak{S}(\mathcal{H}_{A})\) [15, 16].

  7. We denote by \(\mathcal{D}(H)\) the domain of \(H\).

REFERENCES

  1. M. E. Shirokov, ‘‘Continuity of characteristics of composite quantum systems: A review,’’ arXiv: 2201.11477.

  2. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, Berlin, 2012).

    MATH  Google Scholar 

  3. G. Lindblad, ‘‘Expectation and entropy inequalities for finite quantum systems,’’ Commun. Math. Phys. 39, 111–119 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Wehrl, ‘‘General properties of entropy,’’ Rev. Mod. Phys. 50, 221–250 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Lami and M. E. Shirokov, ‘‘Attainability and lower semi-continuity of the relative entropy of entanglement, and variations on the theme,’’ arXiv: 2105.08091.

  6. S. Khatri and M. M. Wilde, ‘‘Principles of quantum communication theory: A modern approach,’’ arXiv: 2011.04672.

  7. B. Simon, Operator Theory: A Comprehensive Course in Analysis, Part IV (Am. Math. Soc., Philadelphia, 2015).

    Book  MATH  Google Scholar 

  8. M. M. Wilde, Quantum Information Theory (Cambridge Univ. Press, Cambridge, 2013).

    Book  MATH  Google Scholar 

  9. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  10. G. Lindblad, ‘‘Entropy, information and quantum measurements,’’ Commun. Math. Phys. 33, 305–322 (1973).

    Article  MathSciNet  Google Scholar 

  11. M. E. Shirokov, ‘‘Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use,’’ Quantum Inf. Process. 19, 164 (2020).

    Article  MathSciNet  Google Scholar 

  12. G. Lindblad, ‘‘An entropy inequality for quantum measurement,’’ Commun. Math. Phys. 28, 245 (1972).

    Article  MathSciNet  Google Scholar 

  13. G. G. Amosov, A. S. Mokeev, and A. N. Pechen, ‘‘On the construction of a quantum channel corresponding to non-commutative graph for a qubit interacting with quantum oscillator,’’ Lobachevskii J. Math. 42, 2280–2284 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. E. Shirokov, ‘‘Entropy reduction of quantum measurements,’’ J. Math. Phys. 52, 052202 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. E. Shirokov, ‘‘Strong convergence of quantum channels: Continuity of the Stinespring dilation and discontinuity of the unitary dilation,’’ J. Math. Phys. 61, 082204 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. M. Wilde, ‘‘Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels,’’ Phys. Rev. A 97, 062305 (2018).

    Article  Google Scholar 

  17. E. H. Lieb and M. B. Ruskai, ‘‘Proof of the strong suadditivity of quantum mechanical entropy,’’ J. Math. Phys. 14, 1938 (1973).

    Article  Google Scholar 

  18. M. E. Shirokov, ‘‘Continuity of the von Neumann entropy,’’ Commun. Math. Phys. 296, 625–654 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer, Berlin, 2004).

    MATH  Google Scholar 

  20. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, ‘‘Entanglement-assisted capacity and the reverse Shannon theorem,’’ IEEE Trans. Inform. Theory 48, 2637–2655 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. S. Holevo and M. E. Shirokov, ‘‘On classical capacities of infinite-dimensional quantum channels,’’ Probl. Inform. Transmis. 49, 15–31 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis (Academic, New York, 1980).

  23. K. Schmudgen, Unbounded Self-adjoint Operators on Hilbert Space (Springer, New York, 2012).

    Book  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to L. Lami whose study of the relative entropy of resource motivated this research. I am also grateful to A. S. Holevo and to the participants of his seminar ‘‘Quantum probability, statistic, information’’ (the Steklov Mathematical Institute) for useful discussion.

Funding

This work is supported by the Russian Science Foundation under grant no. 19-11-00086

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirokov.

Additional information

(Submitted by A. S. Holevo)

APPENDIX A

APPENDIX A

We assume below that the value of \(\text{Tr}H\rho\) (finite or infinite) for a positive (semi-definite) operator \(H\) on a Hilbert space \(\mathcal{H}\) and any positive operator \(\rho\) in \(\mathfrak{T}(\mathcal{H})\) is defined according to the rule (8).

Proposition 5. Let \(\{\rho^{1}_{n}\}\), \(\{\rho^{2}_{n}\}\), \(\{\sigma^{1}_{n}\}\) and \(\{\sigma^{2}_{n}\}\) be sequences of operators in \(\mathfrak{T}_{+}(\mathcal{H})\) converging, respectively, to nonzero operators \(\rho^{1}_{0}\), \(\rho^{2}_{0}\), \(\sigma^{1}_{0}\) and \(\sigma^{2}_{0}\) such that \(\rho^{1}_{n}\geq\rho^{2}_{n}\) and \(\sigma^{1}_{n}\leq\sigma^{2}_{n}\) for all \(n\geq 0\). If

$$A_{1}\doteq\limsup_{n\to+\infty}\text{Tr}\rho^{1}_{n}(-\ln\sigma_{n}^{1})<+\infty\quad and\quad A_{1}-\text{Tr}\rho^{1}_{0}(-\ln\sigma_{0}^{1})=\Delta,$$
(103)

then

$$A_{2}\doteq\limsup_{n\to+\infty}\text{Tr}\rho^{2}_{n}(-\ln\sigma_{n}^{2})<+\infty\quad and\quad A_{2}-\text{Tr}\rho^{2}_{0}(-\ln\sigma_{0}^{2})\leq\Delta.$$

Remark 5. The lower semicontinuity of the von Neumann entropy and the relative entropy implies, due to representation (71), that the function \((\rho,\sigma)\mapsto\text{Tr}\rho(-\ln\sigma)\) is lower semicontinuous on \(\mathfrak{T}_{+}(\mathcal{H})\times\mathfrak{T}_{+}(\mathcal{H})\). It follows that the quantities \(A_{i}-\text{Tr}\rho^{i}_{0}(-\ln\sigma_{0}^{i})\), \(i=1,2\), in Proposition 5 are nonnegative.

Proof. By the condition (103) we may assume that \(\text{Tr}\rho^{1}_{n}(-\ln\sigma_{n}^{1})<+\infty\) for all \(n\geq 0\) and hence

$$\text{supp}\rho_{n}^{i}\subseteq\text{supp}\sigma_{n}^{i}\quad\forall n\geq 0,\quad i=1,2.$$
(104)

Let \(a_{n}^{i}\doteq\text{Tr}\rho^{i}_{n}(-\ln\sigma_{n}^{i})\), \(n\geq 0\), \(i=1,2\). For any natural \(k\) introduce the quantities

$$a_{k,n}^{i}=-\text{Tr}\rho^{i}_{n}\ln(\sigma_{n}^{i}+k^{-1}I_{\mathcal{H}}),\quad n\geq 0,\quad i=1,2.$$

By Theorems VIII.18 and VIII.20 in [22] for each \(i\) and \(k\) the sequence of bounded operators \(\ln(\sigma_{n}^{i}+k^{-1}I_{\mathcal{H}})\) tends to the bounded operator \(\ln(\sigma_{0}^{i}+k^{-1}I_{\mathcal{H}})\) as \(n\to+\infty\) in the operator norm. It follows that

$$\lim_{n\to+\infty}a_{k,n}^{i}=a_{k,0}^{i}<+\infty,\quad\forall k\in\mathbb{N},\quad i=1,2.$$
(105)

By using the operator monotonicity of the logarithm it is easy to show that

$$\sup_{k}a_{k,n}^{i}=a_{n}^{i},\quad\forall n\geq 0,\quad i=1,2.$$
(106)

Thus, for any \(\varepsilon>0\) there is \(k_{\varepsilon}\) such that \(a_{0}^{1}-a_{k_{\varepsilon},0}^{1}<\varepsilon\). Condition (103) and relation (105) with \(i=1\) imply that there is \(n_{\varepsilon}\) such that \(a_{n}^{1}-a_{0}^{1}\leq\Delta+\varepsilon\) and \(a_{0,k_{\varepsilon}}^{1}-a_{n,k_{\varepsilon}}^{1}\leq\varepsilon\) for all \(n\geq n_{\varepsilon}\). It follows that

$$a_{n}^{1}-a_{k_{\varepsilon},n}^{1}=(a_{n}^{1}-a_{0}^{1})+(a_{0}^{1}-a_{k_{\varepsilon},0}^{1})+(a_{k_{\varepsilon},0}^{1}-a_{k_{\varepsilon},n}^{1})<\Delta+3\varepsilon\quad\forall n\geq n_{\varepsilon}.$$
(107)

By using expression (9) and taking (104) into account it is easy to show that

$$a_{n}^{i}-a_{k,n}^{i}=\text{Tr}\rho^{i}_{n}\ln(I_{\mathcal{H}}+k^{-1}[\sigma_{n}^{i}]^{-1}),\quad\forall k,\forall n\geq 0,\quad i=1,2,$$

where \([\sigma_{n}^{i}]^{-1}\) is the Moore–Penrose inverse of \(\sigma_{n}^{i}\). So, since \(\rho_{n}^{1}\geq\rho_{n}^{2}\) and \(\sigma_{n}^{1}\leq\sigma_{n}^{2}\), Lemmas 4 and 5 below show that

$$0\leq a_{n}^{2}-a_{k,n}^{2}\leq a_{n}^{1}-a_{k,n}^{1},\quad\forall k,\quad\forall n\geq 0.$$

Thus, it follows from (105) with \(i=2\), (106) and (107) that

$$a_{n}^{2}-a_{0}^{2}\leq a_{n}^{2}-a_{0,k}^{2}=(a_{n}^{2}-a_{n,k_{\varepsilon}}^{2})+(a_{n,k_{\varepsilon}}^{2}-a_{0,k_{\varepsilon}}^{2})\leq\Delta+4\varepsilon$$

for all sufficiently large \(n\). This implies the assertion of the proposition. \(\Box\)

Lemma 4. Let \(\sigma_{1}\) and \(\sigma_{2}\) be nonzero positive operators in \(\mathfrak{T}(\mathcal{H})\) such that \(\sigma_{1}\leq\sigma_{2}\) and \(c>0\) be arbitrary. Then \(H_{1}=\ln(I_{\mathcal{H}}+c\sigma^{-1}_{1})\) and \(H_{2}=\ln(I_{\mathcal{H}}+c\sigma^{-1}_{2})\) are positive semidefinite operators on \(\mathcal{H}\) such that

$$\mathcal{D}(\sqrt{-\ln\sigma_{1}})\subseteq\mathcal{D}(\sqrt{H_{1}})\cap\mathcal{D}(\sqrt{H_{2}})\quad and\quad\langle\varphi|H_{1}|\varphi\rangle\geq\langle\varphi|H_{2}|\varphi\rangle$$

for any \(\varphi\in\mathcal{D}(\sqrt{-\ln\sigma_{1}})\), where \(\langle\varphi|H_{i}|\varphi\rangle\doteq||\sqrt{H_{i}}\varphi||^{2}\) and \(\sigma^{-1}_{i}\) denotes the Moore–Penrose inverse of \(\sigma_{i}\), \(i=1,2\).Footnote 7

If the operators \(\sigma_{1}\) and \(\sigma_{2}\) are non-degenerate then Lemma 4 can be deduced easily from Corollary 10.12 in [23] and the operator monotonicity of the logarithm.

Proof. Denote \(I_{\mathcal{H}}\) by \(I\) for brevity. For a given vector \(\varphi\in\mathcal{D}(\sqrt{-\ln\sigma_{1}}\hskip 1.0pt)\) and any natural \(k\) and \(n\) introduce the quantities

$$a_{k,n}^{i}=\langle\varphi|P_{n}^{i}\ln(I+c(\sigma_{i}+k^{-1}I)^{-1})|\varphi\rangle,\quad a_{k,*}^{i}=\langle\varphi|\ln(I+c(\sigma_{i}+k^{-1}I)^{-1})|\varphi\rangle$$

and

$$a_{*,n}^{i}=\langle\varphi|P_{n}^{i}\ln(I+c\sigma_{i}^{-1})|\varphi\rangle,\quad i=1,2,$$

where \(P_{n}^{i}\) is the spectral projector of the operator \(\sigma_{i}\) corresponding to its \(n\) maximal nonzero eigenvalues (taking multiplicity into account), \(i=1,2\) (if \(\text{rank}\sigma_{i}<n\) we assume that \(P_{n}^{i}\) is the projector on the support \(\text{supp}\sigma_{i}\) of \(\sigma_{i}\)). Since \(\varphi\in\text{supp}\sigma_{1}\subseteq\text{supp}\sigma_{2}\) by the condition \(\sigma_{1}\leq\sigma_{2}\), we have

$$\lim_{n\rightarrow+\infty}P_{n}^{1}|\varphi\rangle=\lim_{n\rightarrow+\infty}P_{n}^{2}|\varphi\rangle=|\varphi\rangle.$$
(108)

It is easy to see that \(\varphi\in\mathcal{D}(\sqrt{H_{1}}\hskip 1.0pt)\), which means that \(\sup_{n}a_{*,n}^{1}\) is finite. Thus, to prove the assertion of the lemma it suffices to show that

$$\sup_{n}a_{*,n}^{2}\leq\sup_{n}a_{*,n}^{1}.$$

The positivity of the operator \(\ln(I+c(\sigma_{i}+k^{-1}I)^{-1})\) and the operator monotonicity of the logarithm imply that

$$a_{k,n}^{i}\leq a_{k,n+1}^{i},\quad a_{k,n}^{i}\leq a_{k+1,n}^{i},\quad i=1,2,$$
(109)

for all \(n\) and \(k\). Since \(\sigma_{1}\leq\sigma_{2}\), we have \((\sigma_{1}+k^{-1}I)^{-1}\geq(\sigma_{2}+k^{-1}I)^{-1}\) for any \(k\) [23, Corollary 10.13], So, the operator monotonicity of the logarithm also implies

$$a_{k,*}^{1}\geq a_{k,*}^{2}\quad\forall k.$$
(110)

Since \(P_{n}^{i}\ln(I+c\sigma_{i}^{-1})\) and \(\ln(I+c(\sigma_{i}+k^{-1}I)^{-1})\) are bounded positive operators, it follows from (108) and (109) that

$$\sup_{n}a_{k,n}^{i}=\lim_{n\rightarrow+\infty}a_{k,n}^{i}=a_{k,*}^{i},\quad\sup_{k}a_{k,n}^{i}=\lim_{k\rightarrow+\infty}a_{k,n}^{i}=a_{*,n}^{i}$$

and hence

$$\sup_{n}a_{*,n}^{i}=\sup_{n}\sup_{k}a_{k,n}^{i}=\sup_{k}\sup_{n}a_{k,n}^{i}=\sup_{k}a_{k,*}^{i},\quad i=1,2.$$

Thus, inequality (110) shows that

$$\sup_{n}a_{*,n}^{2}=\sup_{k}a_{k,*}^{2}\leq\sup_{k}a_{k,*}^{1}=\sup_{n}a_{*,n}^{1}.$$

\(\Box\)

Lemma 5. Let \(H\) be a positive (semi-definite) operator on a Hilbert space \(\mathcal{H}\) and \(\rho=\sum_{i}|\varphi_{i}\rangle\langle\varphi_{i}|\) the spectral decomposition of a positive operator \(\rho\) in \(\mathfrak{T}(\mathcal{H})\) . If \(\text{Tr}H\rho\) is finite then all the vectors \(\varphi_{i}\) belong to the domain of \(\sqrt{H}\) and

$$\text{Tr}H\rho=\sum_{i}\langle\varphi_{i}|H|\varphi_{i}\rangle=\sum_{i}||\sqrt{H}\varphi_{i}||^{2}.$$

Proof. Let \(P_{n}\) be the spectral projector of \(H\) corresponding to the interval \([0,n]\). Since \(P_{n}H\) is a bounded operator for each \(n\), we have

$$\text{Tr}HP_{n}\rho=\sum_{i}||\sqrt{H}P_{n}\varphi_{i}||^{2}.$$

Since the sequence \(\{||\sqrt{H}P_{n}\varphi_{i}||^{2}\}_{n}\) is nondecreasing for each given \(i\), it follows from the assumption \(\text{Tr}H\rho=\sup_{n}\text{Tr}HP_{n}\rho<+\infty\) that \(a_{i}=\sup_{n}||\sqrt{H}P_{n}\varphi_{i}||^{2}<+\infty\) for all \(i\) and \(\text{Tr}H\rho=\sum_{i}a_{i}\). The finiteness of \(a_{i}\) means, by the spectral theorem, that \(\varphi_{i}\in\mathcal{D}(\sqrt{H})\) and \(a_{i}=||\sqrt{H}\varphi_{i}||^{2}\). \(\Box\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M.E. Convergence Conditions for the Quantum Relative Entropy and Other Applications of the Deneralized Quantum Dini Lemma. Lobachevskii J Math 43, 1755–1777 (2022). https://doi.org/10.1134/S1995080222100353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100353

Keywords:

Navigation