Skip to main content
Log in

On the Counting of Quantum Errors

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the theory of quantum error correction, there are two very important types of subspaces, one is the non-commutative operator graph correspondent to the error and one is generated by the Kraus operators of the error. Dimensions of those subspaces could be considered as characteristics measuring the quality of the error-correcting scheme. In the present paper, we are discussing the relationship between these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Klappenecker and M. Rotteler, ‘‘On the monomiality of nice error bases,’’ IEEE Trans. Inform. Theory 51, 1084–1089 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. S. Holevo, ‘‘Radon–Nikodym derivatives of quantum instruments,’’ J. Math. Phys. 39, 1373–1387 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. E. Shirokov and A. V. Bulinski, ‘‘On quantum channels and operations preserving finiteness of the von Neumann entropy,’’ Lobachevskii J. Math. 41, 2383–2396 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. D. Choi, D. W. Kribs, and K. Zyczkowski, ‘‘Higher-rank numerical ranges and compression problems,’’ Linear Algebra Appl. 418, 828–839 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Cao, D. W. Kribs, C. K. Li, M. I. Nelson, Y. T. Poon, and B. Zeng, ‘‘Higher rank matricial ranges and hybrid quantum error correction,’’ Lin. Multilin. Algebra 69, 827–839 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Duan, S. Severini, and A. Winter, ‘‘Zero-error communication via quantum channels, noncommutative graphs and a quantum Lovasz theta function,’’ IEEE Trans. Inform. Theory 59, 1164–1174 (2012).

    Article  MATH  Google Scholar 

  7. E. Knill and R. Laflamme, ‘‘Theory of error-correction codes,’’ Phys. Rev. A 55, 900–911 (1997).

    Article  MathSciNet  Google Scholar 

  8. E. Knill, R. Laflamme, and L. Viola, ‘‘Theory of quantum error correction for general noise,’’ Phys. Rev. Lett. 84, 2525 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. D. Choi and E. G. Effros, ‘‘Injectivity and operator spaces,’’ J. Funct. Anal. 24, 156–209 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Gottesman, ‘‘Class of quantum error-correcting codes saturating the quantum Hamming bound,’’ Phys. Rev. A 54, 1862 (1996).

    Article  MathSciNet  Google Scholar 

  11. E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, ‘‘Benchmarking quantum computers: The five-qubit error correcting code,’’ Phys. Rev. Lett. 86, 5811 (2001).

    Article  Google Scholar 

  12. E. Andersson, J. D. Cresser, and M. J. Hall, ‘‘Finding the Kraus decomposition from a master equation and vice versa,’’ J. Mod. Opt. 54, 1695–1716 (2007).

    Article  MATH  Google Scholar 

  13. N. Weaver, ‘‘A ‘quantum’ Ramsey theorem for operator systems,’’ Proc. Am. Math. Soc. 145, 4595–4605 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. G. Amosov, ‘‘On general properties of non-commutative operator graphs,’’ Lobachevskii J. Math. 39, 304–308 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. G. Amosov and A. S. Mokeev, ‘‘On non-commutative operator graphs generated by covariant resolutions of identity,’’ Quantum Inform. Process. 17 (12), 325 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. G. Amosov, A. S. Mokeev, and A. N. Pechen, ‘‘Non-commutative graphs and quantum error correction for a two-mode quantum oscillator,’’ Quantum Inform. Process. 19 (3), 1–12 (2020).

    Article  MathSciNet  Google Scholar 

  17. G. G. Amosov, A. S. Mokeev, and A. N. Pechen, ‘‘Noncommutative graphs based on finite-infinite system couplings: Quantum error correction for a qubit coupled to a coherent field,’’ Phys. Rev. A 103, 042407 (2021).

    Article  MathSciNet  Google Scholar 

  18. M. E. Shirokov and T. Shulman, ‘‘On superactivation of zero-error capacities and reversibility of a quantum channel,’’ Commun. Math. Phys. 335, 1159–1179 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. I. Yashin, ‘‘Properties of operator systems, corresponding to channels,’’ Quantum Inform. Process. 19 (7), 1–8 (2020).

    Article  MathSciNet  Google Scholar 

  20. G. G. Amosov and A. S. Mokeev, ‘‘On errors generated by unitary dynamics of bipartite quantum systems,’’ Lobachevskii J. Math. 41, 2310–2315 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Burgarth, G. Chiribella, V. Giovannetti, P. Perinotti, and K. Yuasa, ‘‘Ergodic and mixing quantum channels in finite dimensions,’’ New J. Phys. 15, 073045 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bialonczyk, A. Jamiolkowski, and K. Zyczkowski, ‘‘Application of Shemesh theorem to quantum channels,’’ J. Math. Phys. 59, 102204 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. D. Choi, N. Johnston, and D. W. Kribs,‘‘The multiplicative domain in quantum error correction,’’ J. Phys. A: Math. Theor. 42, 245303 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. G. Amosov and A. S. Mokeev, ‘‘On construction of anticliques for noncommutative operator graphs,’’ J. Math. Sci. 234, 269–276 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by Russian Science Foundation under the grant no. 19-11-00086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mokeev.

Additional information

(Submitted by G. G. Amosov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokeev, A.S. On the Counting of Quantum Errors. Lobachevskii J Math 43, 1720–1725 (2022). https://doi.org/10.1134/S1995080222100298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100298

Keywords:

Navigation