Skip to main content
Log in

What is the Bochner Technique and Where is it Applied

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the present article we consider the generalized Bochner technique that is a natural development of the classical Bochner technique. As an illustration, we prove some Liouville-type theorems for Killing and Killing–Yano tensors, as well as for projective and conformal mappings of complete Riemannian manifolds, using the \(L^{q}\)-Liouville theorems for subharmonic and superharmonic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Agricola and T. Friedrich, Global Analysis. Differential Forms in Analysis, Geometry and Physics (Am. Math. Soc., Philadelphia, 2002).

    MATH  Google Scholar 

  2. S. R. Adams, ‘‘Superharmonic functions on foliations,’’ Trans. AMS 330, 625–635 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. H. Berard, ‘‘From vanishing theorems to estimating theorems: The Bochner technique revisited,’’ Bull. AMS 19, 371–406 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Besse, Einstein Manifolds (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  5. R. L. Bishop and B. O’Neill, ‘‘Manifolds of negative curvature,’’ Trans. AMS 145, 1–49 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Caminha, P. Souza, and F. Camargo, ‘‘Complete foliations of space forms by hypersurfaces,’’ Bull. Braz. Math. Soc. 41, 339–353 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Caminha, ‘‘The geometry of closed conformal vector fields on Riemannian spaces,’’ Bull. Braz. Math. Soc. 42, 277–300 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Cariglia, ‘‘Hidden symmetries of dynamics in classical and quantum physics,’’ Rev. Mod. Phys. 86, 1283 (2014).

    Article  Google Scholar 

  9. X. Chen and Z. Shen, ‘‘A comparison theorem on the Ricci curvature in projective geometry,’’ Ann. Global Anal. Geom. 23, 141–155 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Chervonyi and O. Lunin, ‘‘Killing (-Yano) tensors in string theory,’’ J. High Energy Phys. 9, 182 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. O. Chung, ‘‘Existence of harmonic \(L^{1}\) functions in complete Riemannian manifolds,’’ Proc. AMS 88, 531–532 (1983).

  12. B. Duchesne, ‘‘Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator,’’ Ann. Inst. Fourier (Grenoble) 65, 211–244 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. P. Eisenhart, Riemannian Geometry (Princeton Univ. Press, Princeton, 1949).

    MATH  Google Scholar 

  14. V. P. Frolov and D. Kubizňák, ‘‘Higher-dimensional black holes: Hidden symmetries and separation of variables,’’ Class. Quantum Grav. 25, 154005 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. E. Greene and H. Wu, ‘‘Integrals of subharmonic functions on manifolds of nonnegative curvature,’’ Invent. Math. 27, 265–298 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Greene and H. Wu, ‘‘Embeddings of open Riemannian manifolds by harmonic functions,’’ Ann. Inst. Fourier (Grenoble) 25, 215–235 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Heil, A. Moroianu, and U. Semmelmann, ‘‘Killing and conformal Killing tensors,’’ J. Geom. Phys. 106, 383–400 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Hinterleitner, ‘‘Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature,’’ Publ. Inst. Math., Nouv. Sér. 94 (108), 125–130 (2013).

    MATH  Google Scholar 

  19. A. Huber, ‘‘On subharmonic functions and differential geometry in the large,’’ Comment. Math. Helv. 32, 13–72 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. P. Hughston, R. Penrose, P. Sommers, and M. Walker, ‘‘On a quadratic first integral for the charged particle orbits in the charged Kerr solution,’’ Commun. Math. Phys. 27, 303–308 (1972).

    Article  MathSciNet  Google Scholar 

  21. L. Karp, ‘‘Subharmonic functions on real and complex manifolds,’’ Math. Z. 179, 535–554 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Karp, ‘‘Subharmonic functions, harmonic mappings and isometric immersions,’’ in Seminar on Differential Geometry, Ed. by S. T. Yau (Princeton Univ. Press, Princeton, 1982), pp. 133–142.

    Google Scholar 

  23. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, New York, 1969), Vol. 2.

    MATH  Google Scholar 

  24. W. Kühnel and H.-B. Rademacher, ‘‘Conformal transformations of pseudo-Riemannian manifolds, Recent developments in pseudo-Riemannian geometry,’’ in Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys. (Eur. Math. Soc., Zürich, 2008), pp. 261–298.

  25. P. Li and R. Shoen, ‘‘\(L^{p}\) and mean value properties of subharmonic functions on Riemannian manifolds,’’ Acta Math. 153, 279–301 (1984).

    Article  MathSciNet  Google Scholar 

  26. P. Li, Geometric Analysis (Cambridge Univ. Press, Cambridge, 2012).

    Book  MATH  Google Scholar 

  27. V. S. Matveev and V. Kiosak, ‘‘Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two,’’ Commun. Math. Phys. 297, 401–426 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Mikeš, ‘‘Global geodesic mappings and their generalizations for compact Riemannian spaces,’’ Siles. Univ. Math. Publ. (Opava) 1, 143–149 (1993).

    MathSciNet  MATH  Google Scholar 

  29. J. Mikeš, ‘‘Geodesic mappings of affine-connected and Riemannian spaces,’’ J. Math. Sci. (N.Y.) 78, 311–333 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Mikeš et al., Differential Geometry of Special Mappings (Palacky Univ. Press, Olomouc, 2019).

    Book  MATH  Google Scholar 

  31. J. Mikeš, S. Stepanov, and M. Jukl, ‘‘Vanishing theorems of conformal Killing forms and their applications to electrodynamics in the general relativity theory,’’ Int. J. Geom. Methods Mod. Phys. 11, 1450039 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Penrose, ‘‘Naked singularities,’’ Ann. N. Y. Acad. Sci. 224, 125–134 (1973).

    Article  MATH  Google Scholar 

  33. P. Petersen, Riemannian Geometry (Springer Int., Cham, 2016).

    Book  MATH  Google Scholar 

  34. S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis: A Gene- ralization of the Bochner Technique (Springer, New York, 2008).

    MATH  Google Scholar 

  35. E. N. Sinyukova, ‘‘Geodesic uniqueness in the whole of some generally recurrent Riemannian spaces,’’ J. Math. Sci. (N.Y.) 177, 710–715 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  36. S. E. Stepanov and I. I. Tsyganok, ‘‘Conformal Killing forms on complete Riemannian manifolds with nonpositive curvature operator,’’ J. Math. Anal. Appl. 458, 1–8 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. E. Stepanov, ‘‘A contribution to the geometry in the large of conformal diffeomorphisms,’’ J. Geom. Phys. 143, 1–10 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  38. S. E. Stepanov, V. Rovenski, and J. Mikeš, ‘‘An example of Lichnerowicz type Laplacian,’’ Ann. Global Analys. Geom. 58, 19–34 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Stephani, D. Kramer, M. A. H. Mac Callum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  40. S. Tachibana and S. Yamaguchi, ‘‘The first proper space of for \(p\)-forms in compact Riemannian manifolds of positive curvature operator,’’ J. Diff. Geom. 15, 51–60 (1980).

    MATH  Google Scholar 

  41. M. Walker and R. Penrose, ‘‘On quadratic first integrals of the geodesic equations for type \(\{22\}\) spacetimes,’’ Commun. Math. Phys. 18, 265–274 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Wu, The Bochner Technique in Differential Geometry (Higher Education Press, Beijing, 2017).

    MATH  Google Scholar 

  43. K. Yano and S. Bochner, Curvature and Betti Numbers (Princeton Univ. Press, Princeton, 1953).

    MATH  Google Scholar 

  44. Y. Yasui and T. Houri, ‘‘Hidden symmetry and exact solutions in Einstein gravity,’’ Prog. Theor. Phys. Suppl. 189, 126–164 (2011).

    Article  MATH  Google Scholar 

  45. S. T. Yau, ‘‘Remark on conformal transformations,’’ J. Diff. Geom. 8, 369–381 (1973).

    MathSciNet  MATH  Google Scholar 

  46. S. T. Yau, ‘‘Non-existence of continuous convex functions on certain Riemannian manifolds,’’ Math. Ann. 207, 269–270 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. T. Yau, ‘‘Harmonic functions on complete Riemannian manifolds,’’ Commun. Pure Appl. Math. 28, 201–228 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. T. Yau, ‘‘Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry,’’ Indiana Univ. Math. J. 25, 659–670 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. T. Yau, ‘‘On the heat kernel of a complete Riemannian manifold,’’ J. Math. Pures Appl., Ser. 9, 57 (2), 191–201 (1978).

    MATH  Google Scholar 

  50. S. T. Yau, ‘‘Erratum: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25, 659–670 (1976),’’ Indiana Univ. Math. J. 31 (4), 607 (1982).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of the first author was supported by the Internal Grant Agency of the Faculty of Science of Palacky University, Olomouc (grant no. 2022017 ‘‘Mathematical Structures").

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. E. Stepanov or J. Mikeš.

Additional information

(Submitted by M. A.Malakhaltsev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.E., Mikeš, J. What is the Bochner Technique and Where is it Applied. Lobachevskii J Math 43, 709–719 (2022). https://doi.org/10.1134/S1995080222060312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222060312

Keywords:

Navigation