Skip to main content
Log in

Analytic Continuation Formulas for the Hypergeometric Functions in Three Variables of Second Order

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, some kind of hypergeometric functions are considered. For the three variables hypergeometric functions \({{F}_{1c}}\left(x,y,z\right)\), \({{F}_{2c}}\left(x,y,z\right)\), \({{F}_{4b}}\left(x,y,z\right)\), \({{F}_{4c}}\left(x,y,z\right)\), \({{F}_{5b}}\left(x,y,z\right)\), \({{F}_{5c}}\left(x,y,z\right)\) are obtained the new analytic continuation formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Barros-Neto and I. M. Gelfand, ‘‘Fundamental solutions for the Tricomi operator I,’’ Duke Math. J. 98, 465–483 (1999).

    Article  MathSciNet  Google Scholar 

  2. J. Barros-Neto and I. M. Gelfand, ‘‘Fundamental solutions for the Tricomi operator II,’’ Duke Math. J. 111, 561–584 (2002).

    Article  MathSciNet  Google Scholar 

  3. J. Barros-Neto and I. M. Gelfand, ‘‘Fundamental solutions for the Tricomi operator III,’’ Duke Math. J. 128, 119–140 (2005).

    Article  MathSciNet  Google Scholar 

  4. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics (Wiley, New York, 1958).

    MATH  Google Scholar 

  5. A. Hasanov, ‘‘Fundamental solutions of generalized bi-axially symmetric Helmholtz equation,’’ Complex Variab. Ellipt. Equat. 52, 673–683 (2007).

    MATH  Google Scholar 

  6. A. Hasanov, ‘‘Some solutions of generalized Rassias’s equation,’’ Int. J. Appl. Math. Stat. 8 (M07), 20–30 (2007).

    MathSciNet  MATH  Google Scholar 

  7. A. Hasanov, ‘‘The solution of the Cauchy problem for generalized Euler–Poisson–Darboux equation,’’ Int. J. Appl. Math. Stat. 8 (M07), 30–44 (2007).

    MathSciNet  MATH  Google Scholar 

  8. A. Hasanov, ‘‘Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration,’’ Int. J. Appl. Math. Stat. 13 (8), 41–49 (2008).

    MathSciNet  Google Scholar 

  9. A. Hasanov and E. T. Karimov, ‘‘Fundamental solutions for a class of three-dimensional elliptic equations with singular coeffcients,’’ Appl. Math. Lett. 22, 1828–1832 (2009).

    Article  MathSciNet  Google Scholar 

  10. A. Hasanov, J. M. Rassias, and M. Turaev, ‘‘Fundamental solution for the generalized elliptic Gellerstedt equation,’’ in Functional Equations, Difference Inequalities and ULAM Stability Notions (Nova Science, New York, 2010), Vol. 6, pp. 73–83.

    Google Scholar 

  11. G. Lohofer, ‘‘Theory of an electro-magnetically deviated metal sphere. 1: Absorbed power,’’ SIAM J. Appl. Math. 49, 567–581 (1989).

    Article  MathSciNet  Google Scholar 

  12. A. W. Niukkanen, ‘‘Generalized hypergeometric series arising in physical and quantum chemical applications,’’ J. Phys. A: Math. Gen. 16, 1813–1825 (1983).

    Article  Google Scholar 

  13. F. I. Frankl, Selected Works in Gas Dynamics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  14. R. J. Weinacht, ‘‘Fundamental solutions for a class of singular equations,’’ Contrib. Differ. Equat. 3, 43–551 (1964).

    MathSciNet  MATH  Google Scholar 

  15. A. Weinstein, ‘‘Discontinuous integrals and generalized potential theory,’’ Contrib. Trans. Am. Math. Soc. 63, 342–354 (1946).

    Article  MathSciNet  Google Scholar 

  16. Y. L. Luke, The Special Functions and their Approximations (Academic, New York, 1969), Vols. 1, 2.

    MATH  Google Scholar 

  17. A. S. Berdyshev, A. Hasanov, and Zh. A. Abdiramanov, ‘‘Solution of Cauchy problem for the generalized Gellerstedt equation,’’ Lobachevskii J. Math. 41, 1762–1771 (2020).

    Article  MathSciNet  Google Scholar 

  18. A. Hasanov and M. Ruzhansky, ‘‘Hypergeometric expansions of solutions of the degenerating model parabolic equations of the third order,’’ Lobachevskii J. Math. 41, 27–31 (2020).

    Article  MathSciNet  Google Scholar 

  19. M. Ruzhansky and A. Hasanov, ‘‘Self-similar solutions of some model degenerate partial differential equations of the second, third and fourth order,’’ Lobachevskii J. Math. 41, 1103–1114 (2020).

    Article  MathSciNet  Google Scholar 

  20. S. I. Bezrodnykh, ‘‘Analytic continuation formulas and Jacobi-type relations for the Lauricella function,’’ Dokl. Math. 93, 129–134 (2016).

    Article  MathSciNet  Google Scholar 

  21. S. I. Bezrodnykh and V. I. Vlasov, ‘‘On a new representation for the solution of the Riemann–Hilbert problem,’’ Math. Notes 99, 932–937 (2016).

    Article  MathSciNet  Google Scholar 

  22. S. I. Bezrodnykh, ‘‘Jacobi-type differential relations for the Lauricella function \(F_{D}^{(N)}\),’’ Math. Notes 99, 821–833 (2016).

    Article  MathSciNet  Google Scholar 

  23. S. I. Bezrodnykh and V. I. Vlasov, ‘‘The Riemann–Hilbert problem in a complex domain for a model of magnetic reconnection in a plasma,’’ Comput. Math. Math. Phys. 42, 263–298 (2002).

    MathSciNet  MATH  Google Scholar 

  24. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    MATH  Google Scholar 

  25. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted, Ellis Horwood, New York, 1985).

    MATH  Google Scholar 

  26. P. Appell and Kampe de Feriets, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite (Gauthier-Villars, Paris, 1926).

  27. S. Saran, ‘‘Relations between functions contiguous to certain hypergeometric functions of three variables,’’ Ganita, тДЦ 5, 69–76 (1954).

    MathSciNet  MATH  Google Scholar 

  28. S. Saran, ‘‘Transformations of certain hypergeometric functions of three variables,’’ Acta Math. 93, 292–312 (1955).

    Article  MathSciNet  Google Scholar 

  29. R. C. Pandey, ‘‘On the expansions of hypergeometric functions,’’ Agra Univ. J. Res. Sci. 12, 159–169 (1963).

    Google Scholar 

  30. A. Hasanov and M. Ruzhanskiy, ‘‘Euler-type integral representations for hypergeometric functions in three second-order variables,’’ Bull. Inst. Math. 6, 73–223 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Hasanov or T. K. Yuldashev.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanov, A., Yuldashev, T.K. Analytic Continuation Formulas for the Hypergeometric Functions in Three Variables of Second Order. Lobachevskii J Math 43, 386–393 (2022). https://doi.org/10.1134/S1995080222050146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222050146

Keywords:

Navigation