Skip to main content
Log in

A Solvability of a Problem for a Fredholm Integro-Differential Equation with Weakly Singular Kernel

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Two-point boundary value problem for Fredholm integro-differential equation with singular kernel is considered. We propose a method for the investigation and solving of problem for the Fredholm integro-differential equation with weakly singular kernel based on the partition of the interval and introduction of additional parameters. Every partition of the interval is associated with a homogeneous Fredholm integral equation with weakly singular kernel of the second kind. The definition of regular partitions is presented. It is shown that the set of regular partitions is nonempty. A criterion for the solvability of the investigated problem is established and an algorithm for finding its solutions is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems (Utrecht, Boston, VSP, 2004).

    Book  Google Scholar 

  2. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  3. A. M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications (Springer, Higher Equation Press, Berlin, Beijing, 2011).

    Book  Google Scholar 

  4. D. S. Dzhumabaev, ‘‘A method for solving the linear boundary value problem for an integro-differential equation,’’ Comput. Math. Math. Phys. 50, 1150—1161 (2010).

    Article  MathSciNet  Google Scholar 

  5. D. S. Dzhumabaev and E. A. Bakirova, ‘‘Criteria for the well-posedness of a linear two-point boundary value problem for systems of integro-differential equations,’’ Differ. Equat. 46, 553–567 (2010).

    Article  Google Scholar 

  6. D. S. Dzhumabaev and E. A. Bakirova, ‘‘Criteria for the unique solvability of a linear two-point boundary value problem for systems of integro-differential equations,’’ Differ. Equat. 49, 1087–1102 (2013).

    Article  MathSciNet  Google Scholar 

  7. D. S. Dzhumabaev and E. A. Bakirova, ‘‘On unique solvability of a boundary-value problem for Fredholm intergo-differential equations with degenerate kernel,’’ J. Math. Sci. 220, 440–460 (2017).

    Article  MathSciNet  Google Scholar 

  8. D. S. Dzhumabaev, ‘‘An algorithm for solving the linear boundary value problem for an integro-differential equation,’’ Comput. Math. Math. Phys. 53, 736–758 (2013).

    Article  MathSciNet  Google Scholar 

  9. D. S. Dzhumabaev, ‘‘Necessary and sufficient conditions for the solvability of linear boundary-value problems for the Fredholm integro-differential equation,’’ Ukr. Math. J. 66, 1200–1219 (2015).

    Article  Google Scholar 

  10. D. S. Dzhumabaev, ‘‘Solvability of a linear boundary value problem for a Fredholm integro-differential equation with impulsive inputs,’’ Differ. Equat. 51, 1189–1205 (2015).

    MathSciNet  MATH  Google Scholar 

  11. D. S. Dzhumabaev, ‘‘On one approach to solve the linear boundary value problems for Fredholm integro-differential equations,’’ J. Comput. Appl. Math. 294, 342–357 (2016).

    Article  MathSciNet  Google Scholar 

  12. E. A. Bakirova, N. B. Iskakova, and A. T. Assanova, ‘‘Numerical method for the solution of linear boundary-value problems for integrodifferential equations based on spline approximations,’’ Ukr. Math. J. 71, 1341–1358 (2020).

    Article  Google Scholar 

  13. I. Parts, A. Pedas, and E. Tamme, ‘‘Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels,’’ SIAM J. Numer. Anal. 43, 1897–1911 (2005).

    Article  MathSciNet  Google Scholar 

  14. A. Pedas and E. Tamme, ‘‘Spline collocation method for integro-differential equations with weakly singular kernels,’’ J. Comput. Appl. Math. 197, 253–269 (2006).

    Article  MathSciNet  Google Scholar 

  15. A. Pedas and E. Tamme, ‘‘Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels,’’ J. Comput. Appl. Math. 213, 111–126 (2008).

    Article  MathSciNet  Google Scholar 

  16. M. Kolk, A. Pedas, and G. Vainikko, ‘‘High-order methods for Volterra integral equations with general weak singularities,’’ Numer. Funct. Anal. Optim. 30, 1002–1024 (2009).

    Article  MathSciNet  Google Scholar 

  17. R. Kangro and E. Tamme, ‘‘On fully discrete collocation methods for solving weakly singular integro-differential equations,’’ Math. Model. Anal. 15, 69–82 (2010).

    Article  MathSciNet  Google Scholar 

  18. K. Orav-Puurand, A. Pedas, and G. Vainikko, ‘‘Nystr\(\ddot{o}\)m type methods for Fredholm integral equations with weak singularities,’’ J. Comput. Appl. Math. 234, 2848–2858 (2010).

    Article  MathSciNet  Google Scholar 

  19. A. Pedas and E. Tamme, ‘‘A discrete collocation method for Fredholm integro-differential equations with weakly singular kernels,’’ Appl. Numer. Math. 61, 738–751 (2011).

    Article  MathSciNet  Google Scholar 

  20. A. Pedas and E. Tamme, ‘‘Product integration for weakly singular integro-differential equations,’’ Math. Model. Anal. 16, 153—172 (2011).

    Article  MathSciNet  Google Scholar 

  21. A. Pedas and E. Tamme, ‘‘On the convergence of spline collocation methods for solving fractional differential equations,’’ J. Comput. Appl. Math. 235, 3502—3514 (2011).

    Article  MathSciNet  Google Scholar 

  22. A. Pedas and E. Tamme, ‘‘Piecewise polynomial collocation for linear boundary value problems of fractional differential equations,’’ J. Comput. Appl. Math. 236, 3349–3359 (2012).

    Article  MathSciNet  Google Scholar 

  23. A. Pedas and E. Tamme, ‘‘Numerical solution of nonlinear fractional differential equations by spline collocation methods,’’ J. Comput. Appl. Math. 255, 216–230 (2014).

    Article  MathSciNet  Google Scholar 

  24. X. Yang, Da Xu, and H. Zhang, ‘‘Quasi-wavelet based numerical method for fourth-order partial integro-differential equations with a weakly singular kernel,’’ Int. J. Comput. Math. 88, 3236–3254 (2011).

    Article  MathSciNet  Google Scholar 

  25. X. Yang, Da Xu, and H. Zhang, ‘‘Crank-Nicolson/quasi-wavelets method for solving fourth order partial integro-differential equation with a weakly singular kernel,’’ J. Comput. Phys. 234, 317–329 (2013).

    Article  MathSciNet  Google Scholar 

  26. H. Zhang, X. Han, and X. Yang, ‘‘Quintic B-spline collocation method for fourth order partial integro-differential equations with a weakly singular kernel,’’ Appl. Math. Comput. 219, 6565–6575 (2013).

    MathSciNet  MATH  Google Scholar 

  27. X. Xu and Da Xu, ‘‘A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method,’’ Comput. Appl. Math. 37, 4145–4168 (2018).

    Article  MathSciNet  Google Scholar 

  28. Da Xu, W. Qiu, and J. Guo, ‘‘A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel,’’ Numer. Methods Part. Differ. Equat. 36, 439–458 (2020).

    Article  MathSciNet  Google Scholar 

  29. T. K. Yuldashev and S. K. Zarifzoda, ‘‘New type super singular integro-differential equation and its conjugate equation,’’ Lobachevskii J. Math. 41, 1123–1130 (2020).

    Article  MathSciNet  Google Scholar 

  30. T. K. Yuldashev and S. K. Zarifzoda, ‘‘Mellin transform and integro-differential equations with logarithmic singularity in the kernel,’’ Lobachevskii J. Math. 41, 1910–1917 (2020).

    Article  MathSciNet  Google Scholar 

  31. T. K. Yuldashev and S. K. Zarifzoda, ‘‘On a new class of singular integro-differential equations,’’ Bull. Karaganda Univ. Math. 1 (101), 138–148 (2021).

    Article  Google Scholar 

  32. D. S. Dzhumabayev, ‘‘Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation,’’ USSR Comput. Math. Math. Phys. 29, 34–46 (1989).

    Article  Google Scholar 

  33. N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  34. A. T. Assanova and R. E. Uteshova, ‘‘A singular boundary value problem for evolution equations of hyperbolic type,’’ Chaos Solitons Fractals 143, 110517 (2021).

    Article  MathSciNet  Google Scholar 

  35. A. T. Assanova, E. A. Bakirova, and Z. M. Kadirbayeva, ‘‘Numerical solution to a control problem for integro-differential equations,’’ Comput. Math. Math. Phys. 60, 203–221 (2020).

    Article  MathSciNet  Google Scholar 

  36. A. T. Assanova, E. A. Bakirova, Z. M. Kadirbayeva, and R. E. Uteshova, ‘‘A computational method for solving a problem with parameter for linear systems of integro-differential equations,’’ Comput. Appl. Math. 39, 248 (2020).

    Article  MathSciNet  Google Scholar 

  37. A. T. Assanova, E. A. Bakirova, and G. K. Vassilina, ‘‘Well-posedness of problem with parameter for an integro-differential equation,’’ Analysis: Int. Math. J. Anal. Appl. 40, 175–191 (2020).

    Article  MathSciNet  Google Scholar 

  38. E. A. Bakirova, A. T. Assanova, and Z. M. Kadirbayeva, ‘‘A problem with parameter for the integro-differential equations,’’ Math. Model. Anal. 26, 34–54 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP09258829).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. T. Assanova or S. N. Nurmukanbet.

Additional information

(Submitted by T. K. Yuldashev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assanova, A.T., Nurmukanbet, S.N. A Solvability of a Problem for a Fredholm Integro-Differential Equation with Weakly Singular Kernel. Lobachevskii J Math 43, 182–191 (2022). https://doi.org/10.1134/S1995080222040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222040047

Keywords:

Navigation