Skip to main content
Log in

Comparison of Multiplicative Frailty Models Under Weibull Baseline Distribution

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Traditional survival analysis techniques focus on the occurrence of failures over the time. During the analysis of such events, ignorance of related observed and unobserved covariates may lead to adverse consequences. In this context, frailty models are the viable choice to counter the problem of the unobserved heterogeneity in individual risks to disease and death. In this article, we assume that frailty acts multiplicatively to hazard rate. We propose generalized Lindley (GL) frailty model with Weibull as baseline distribution for hazard function. The Bayesian paradigm of Markov Chain Monte Carlo (MCMC) methodology is used to estimate the model parameters. Subsequently, model comparisons are performed using Bayesian comparison techniques. The popular kidney data set is used to illustrate the results and to demonstrate that better models are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. J. W. Vaupel, K. G. Manton, and E. Stallaed, ‘‘The impact of heterogeneity in individual frailty on the dynamics of mortality,’’ Demography 16, 439–454 (1979).

    Article  Google Scholar 

  2. D. R. Cox, ‘‘Regression models and life tables (with discussion),’’ J. R. Stat. Soc., Ser. B 34, 187–220 (1972).

    MATH  Google Scholar 

  3. D. Oakes, ‘‘Bivariate survival models induced by frailties,’’ J. Am. Stat. Assoc. 84 (406), 487–493 (1989).

    Article  MathSciNet  Google Scholar 

  4. P. Hougaard, ‘‘A class of multivariate failure time distributions,’’ Biometrika 73, 671–678 (1986).

    MathSciNet  MATH  Google Scholar 

  5. P. Hougaard, ‘‘Discussion of the paper by D. G. Clayton and J. Cuzick,’’ J. R. Stat. Soc., Ser. A 148, 113–114 (1985).

    Google Scholar 

  6. P. Hougaard, ‘‘Modeling heterogeneity in survival data,’’ J. Appl. Prob. 28, 695–701 (1991).

    Article  MathSciNet  Google Scholar 

  7. P. Hougaard, Analysis of Multivariate Survival Data (Springer, New York, 2000).

    Book  Google Scholar 

  8. C. J. Flinn and J. J. Heckman, ‘‘New methods for analyzing individual event histories,’’ in Sociological Methodology, Ed. by S. Leinhardt (Jossey-Bass, 1982), pp. 99–140.

    Google Scholar 

  9. D. D. Hanagal, ‘‘Frailty regression models in mixture distributions,’’ J. Stat. Planning Inference 138, 2462–2468 (2008).

    Article  MathSciNet  Google Scholar 

  10. D. D. Hanagal and A. D. Dabade, ‘‘Modeling of inverse Gaussian frailty model for bivariate survival data,’’ Commun. Stat. Theory Methods 42, 3744–3769 (2013).

    Article  MathSciNet  Google Scholar 

  11. D. D. Hanagal and A. D. Dabade, ‘‘Comparison of shared frailty models for kidney infection data under exponential power baseline distribution,’’ Commun. Stat.—Theory Methods 44, 5091–5108 (2015).

    Article  MathSciNet  Google Scholar 

  12. D. D. Hanagal and A. Pandey, ‘‘Inverse Gaussian shared frailty for modeling kidney infection data,’’ Adv. Reliab. 1, 1–14 (2014).

    Google Scholar 

  13. S. Tyagi, ‘‘Analysis of bivariate survival data using shared inverse Gaussian frailty models: A Bayesian approach,’’ in Predictive Analytics Using Statistics and Big Data: Concepts and Modeling (Bentham Books, 2020), No. 14, pp. 75–88.

  14. D. D. Hanagal and R. Sharma, ‘‘Analysis of bivariate survival data using shared inverse Gaussian frailty model,’’ Commun. Stat.—Theory Methods 44, 1351–1380 (2015).

    Article  MathSciNet  Google Scholar 

  15. D. D. Hanagal and A. Pandey, ‘‘Gamma frailty models for bivariate survival data,’’ J. Stat. Comput. Simul. 85, 3172–3189 (2015).

    Article  MathSciNet  Google Scholar 

  16. D. D. Hanagal and A. Pandey, ‘‘Shared inverse Gaussian frailty models based on additive hazards,’’ Commun. Stat.—Theory Methods 46, 11143–11162 (2017).

    Article  MathSciNet  Google Scholar 

  17. D. D. Hanagal and A. Pandey, ‘‘Gamma shared frailty model based on reversed hazard rate for bivariate survival data,’’ Stat. Prob. Lett. 88, 190–196 (2014).

    Article  MathSciNet  Google Scholar 

  18. D. D. Hanagal and A. Pandey, ‘‘Inverse Gaussian shared frailty models with generalized exponential and generalized inverted exponential as baseline distributions,’’ J. Data Sci. 13, 569–602 (2015).

    Article  Google Scholar 

  19. D. D. Hanagal and A. Pandey, ‘‘Gamma shared frailty model based on reversed hazard rate,’’ Commun. Stat.—Theory Methods 45, 2071–2088 (2016).

    Article  MathSciNet  Google Scholar 

  20. D. D. Hanagal and A. Pandey, ‘‘Inverse Gaussian shared frailty models based on reversed hazard rate,’’ Model Assist. Stat. Appl. 11, 137–151 (2016).

    MATH  Google Scholar 

  21. D. D. Hanagal and A. Pandey, ‘‘Shared frailty models based on reversed hazard rate for modified inverse Weibull distribution as baseline distribution,’’ Commun. Stat. Theory Methods 46, 234–246 (2017).

    Article  MathSciNet  Google Scholar 

  22. A. Pandey, D. D. Hanagal, P. Gupta, and S. Tyagi, ‘‘Analysis of australian twin data using generalized inverse gaussian shared frailty models based on reversed hazard rate,’’ Int. J. Stat. Reliab. Eng. 7, 219–235 (2020).

    Google Scholar 

  23. Gupta, ‘‘Bayesian inferences in generalized Lindley shared frailty model with left censored bivariate data,’’ in Advance Research Trends in Statistics and Data Science (MKSES Publ., 2021), pp. 137–157.

  24. D. V. Lindley, ‘‘Fiducial distributions and Bayes’s theorem,’’ J. R. Stat. Soc., B 20, 102–107 (1958).

    MathSciNet  MATH  Google Scholar 

  25. I. Elbatal, F. Merovci, and M. Elgarhy, ‘‘A new generalized Lindley distribution,’’ Math. Theory Model. 3 (13), 30–47 (2013).

    Google Scholar 

  26. G. S. Mudholkar and D. K. Srivastava, ‘‘Exponentiated Weibull family for analyzing bathtub failure-rate data,’’ IEEE Trans. Reliab. 42, 299–302 (1993).

    Article  Google Scholar 

  27. C. A. Santos and J. A. Achcar, ‘‘A Bayesian analysis for multivariate survival data in the presence of covariates,’’ J. Stat. Theory Appl. 9, 233–253 (2010).

    MathSciNet  Google Scholar 

  28. J. G. Ibrahim, C. Ming-Hui, and D. Sinha, Bayesian Survival Analysis (Springer, Berlin, 2001).

    Book  Google Scholar 

  29. J. Geweke, ‘‘Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments,’’ in Bayesian Statistics 4, Ed. by J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith (Oxford Univ. Press, Oxford, 1992), pp. 169–193.

    Google Scholar 

  30. A. Gelman and D. B. Rubin, ‘‘A single series from the Gibbs sampler provides a false sense of security,’’ in Bayesian Statistics 4, Ed. by J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith (Oxford Univ. Press, 1992), pp. 625–632.

    Google Scholar 

  31. C. A. McGilchrist and C. W. Aisbett, ‘‘Regression with frailty in survival analysis,’’ Biometrics 47, 461–466 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind Pandey or Shikhar Tyagi.

Additional information

(Submitted by A. I. Volodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Tyagi, S. Comparison of Multiplicative Frailty Models Under Weibull Baseline Distribution. Lobachevskii J Math 42, 3184–3195 (2021). https://doi.org/10.1134/S1995080222010140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222010140

Keywords:

Navigation