Skip to main content
Log in

Ring Isomorphisms of \(\ast\)-Subalgebras of Murray–von Neumann Factors

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The present paper is devoted to study of ring isomorphisms of \(\ast\)-subalgebras of Murray–von Neumann factors. Let \(\mathcal{M},\) \(\mathcal{N}\) be von Neumann factors of type II\({}_{1},\) and let \(S(\mathcal{M}),\) \(S(\mathcal{N})\) be the \(\ast\)-algebras of all measurable operators affiliated with \(\mathcal{M}\) and \(\mathcal{N},\) respectively. Suppose that \(\mathcal{A}\subset S(\mathcal{M}),\) \(\mathcal{B}\subset S(\mathcal{N})\) are their \(\ast\)-subalgebras such that \(\mathcal{M}\subset\mathcal{A},\) \(\mathcal{N}\subset\mathcal{B}\). We prove that for every ring isomorphism \(\Phi:\mathcal{A}\to\mathcal{B}\) there exist a positive invertible element \(a\in\mathcal{B}\) with \(a^{-1}\in\mathcal{B}\) and a real \(\ast\)-isomorphism \(\Psi:\mathcal{M}\to\mathcal{N}\) (which extends to a real \(\ast\)-isomorphism from \(\mathcal{A}\) onto \(\mathcal{B}\)) such that \(\Phi(x)=a\Psi(x)a^{-1}\) for all \(x\in\mathcal{A}\). In particular, \(\Phi\) is real-linear and continuous in the measure topology. In particular, noncommutative Arens algebras and noncommutative \(L_{log}\)-algebras associated with von Neumann factors of type II\({}_{1}\) satisfy the above conditions and the main Theorem implies the automatic continuity of their ring isomorphisms in the corresponding metrics. We also present an example of a \(\ast\)-subalgebra in \(S(\mathcal{M}),\) which shows that the condition \(\mathcal{M}\subset\mathcal{A}\) is essential in the above mentioned result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Z. Abdullaev, ‘‘The dual space for Arens algebra,’’ Uzbek. Math. Zh. 2, 3–7 (1997).

    MATH  Google Scholar 

  2. R. Arens, ‘‘The space \(L^{\omega}\) and convex topological rings,’’ Bull. Am. Math. Soc. 52, 931–935 (1946).

    Article  Google Scholar 

  3. S. Albeverio, Sh. A. Ayupov, and K. K. Kudaybergenov, ‘‘Non-commutative Arens algebras and their derivations,’’ J. Funct. Anal. 253, 287–302 (2007).

    Article  MathSciNet  Google Scholar 

  4. S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, and R. Djumamuratov, ‘‘Automorphisms of central extensions of type I von Neumann algebras,’’ Studia Math. 207, 1–17 (2011).

    Article  MathSciNet  Google Scholar 

  5. M. Ya. Antonovskii and V. G. Boltyanskii, ‘‘Tikhonov semifields and certain problems in general topology,’’ Russ. Math. Surv. 25 (3), 1–43 (1970).

    Article  Google Scholar 

  6. Sh. A. Ayupov, ‘‘Homomorphisms of a class of rings and two-valued measures on Boolean algebras,’’ Funct. Anal. Appl. 11, 217–219 (1977).

    Article  MathSciNet  Google Scholar 

  7. Sh. A. Ayupov and K. K. Kudaybergenov, ‘‘Infinite dimensional central simple regular algebras with outer derivations,’’ Lobachevskii J. Math. 41 (3), 326–332 (2020).

    Article  MathSciNet  Google Scholar 

  8. Sh. A. Ayupov and K. K. Kudaybergenov, ‘‘Ring isomorphisms of Murray–von Neumann algebras,’’ J. Funct. Anal. 280, 108891 (2021).

  9. S. K. Berberian, Baer \(\ast\) -rings (Springer, Berlin, 1972).

  10. O. O. Bezushchak, ‘‘Derivations and automorphisms of locally matrix algebras and groups,’’ Dopov. Nat. Acad. Sci. Ukr. 9, 19–23 (2020).

    MathSciNet  MATH  Google Scholar 

  11. A. M. Bikchentaev, ‘‘Minimality of convergence in measure topologies on finite von Neumann algebras,’’ Math. Notes 75, 315–321 (2004).

    Article  MathSciNet  Google Scholar 

  12. G. Birkhoff, Lattice Theory (Am. Math. Soc., Providence, RI, 1967).

    MATH  Google Scholar 

  13. L. Ciach, ‘‘Linear-topological spaces of operators affiliated with von Neumann algebra,’’ Bull. Polish Acad. Sc. 31, 161–166 (1983).

    MathSciNet  MATH  Google Scholar 

  14. K. Dykema, F. A. Sukochev, and D. Zanin, ‘‘Algebras of log-integrable functions and operators,’’ Complex Anal. Oper. Theory 10, 1775–1787 (2016).

    Article  MathSciNet  Google Scholar 

  15. K. Dykema, F. A. Sukochev, and D. Zanin, ‘‘An upper triangular decomposition theorem for some unbounded operators affiliated to II\({}_{1}\)-factors,’’ Israel J. Math. 222, 645–709 (2017).

    Article  MathSciNet  Google Scholar 

  16. A. Inoue, ‘‘On a class of unbounded operator algebras. II’’ Pacif. J. Math. 66, 411–431 (1976).

    Article  MathSciNet  Google Scholar 

  17. R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras. II (Academic, New York, 1986).

    MATH  Google Scholar 

  18. R. Kadison and Z. Liu, ‘‘A note on derivations of Murray–von Neumann algebras,’’ Proc. Natl. Acad. Sci. U.S.A. 111, 2087–2093 (2014).

    Article  MathSciNet  Google Scholar 

  19. M. A. Muratov and V. I. Chilin, Algebras of Measurable and Locally Measurable Operators (Inst. Math. Ukr. Acad. Sci., Kiev, 2007) [in Russian].

    MATH  Google Scholar 

  20. M. Mori, ‘‘Lattice isomorphisms between projection lattices of von Neumann algebras,’’ Forum Math. Sigma 8, 1–19 (2020).

    Article  MathSciNet  Google Scholar 

  21. E. Nelson, ‘‘Notes on non-commutative integration,’’ J. Funct. Anal. 15, 103–116 (1974).

    Article  MathSciNet  Google Scholar 

  22. J. von Neumann, ‘‘Continuous rings and their arithmetics,’’ Proc. Natl. Acad. Sci. U.S.A. 23, 341–349 (1937).

    Article  Google Scholar 

  23. J. von Neumann, Continuous Geometry (Princeton Univ. Press, Princeton, NJ, 1960).

    MATH  Google Scholar 

  24. K. Saitô, ‘‘On the algebra of measurable operators for a general \(AW^{*}\)-algebra, II.’’ Tohoku Math. J. 23, 525–534 (1971).

    MathSciNet  Google Scholar 

  25. S. Sakai, \(C^{*}\) -Algebras and \(W^{*}\) -Algebras (Springer, Berlin, 1998).

    Book  Google Scholar 

  26. I. E. Segal, ‘‘A non-commutative extension of abstract integration,’’ Ann. Math. 57, 401–457 (1953).

    Article  MathSciNet  Google Scholar 

  27. L. A. Skornyakov, Complemented Modular Lattices and Regular Rings (Oliver and Boyd, London, 1964).

    MATH  Google Scholar 

  28. S. Ulam, ‘‘Zur Mass theory inder allgemeinen Mengenlehre,’’ Fund. Math. 16, 140–150 (1930).

    Article  Google Scholar 

  29. R. J. Tauer, ‘‘Maximal abelian subalgebras in finite factors of type II,’’ Trans. Am. Math. Soc. 114, 281–308 (1965).

    Article  MathSciNet  Google Scholar 

  30. K. Yosida, Functional Analysis (Springer, Berlin, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. Ayupov or K. Kudaybergenov.

Additional information

(Submitted by E. A. Turilova)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayupov, S., Kudaybergenov, K. Ring Isomorphisms of \(\ast\)-Subalgebras of Murray–von Neumann Factors. Lobachevskii J Math 42, 2730–2739 (2021). https://doi.org/10.1134/S1995080221120064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221120064

Keywords:

Navigation