Skip to main content
Log in

Geometrically Integrable Maps in the Plane and Their Periodic Orbits

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The uniform approach to the concept of geometric integrability for discrete dynamical systems on invariant plane sets is suggested. Geometric and analytic necessary and sufficient conditions for the geometric integrability of maps on invariant plane sets are proved. The solution of the coexistence problem of periodic orbits periods for these maps is given. Obtained results are applied, in particular, to description of the set of periodic orbits (least) periods of geometrically integrable maps with the quotient which is a symmetric Lorenz map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. E. Adler, ‘‘Discretizations of the Landau-Lifshits equation,’’ Theor. Math. Phys. 124, 897–908 (2000).

    Article  MathSciNet  Google Scholar 

  2. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, ‘‘Discrete nonlinear hyperbolic equations. Classification of integrable cases,’’ Funct. Anal. Appl. 43, 3–17 (2009).

    Article  MathSciNet  Google Scholar 

  3. V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, ‘‘Attractive nonrough limit sets of Lorenz-attractor type,’’ Tr. Mosk. Mat. Ob-va 44, 150–212 (1982).

    Google Scholar 

  4. L. Alséda, J. Llibre, M. Misiurewicz, and C. Tresser, ‘‘Periods and entropy for Lorenz-like maps,’’ Ann. Inst. Fourier (Grenoble) 39, 929–952 (1989).

    Article  MathSciNet  Google Scholar 

  5. D. V. Anosov, ‘‘Structurally stable systems,’’ Proc. Steklov Inst. Math. 169, 61–95 (1986).

    MATH  Google Scholar 

  6. D. V. Anosov and Ye. V. Zhuzhoma, ‘‘Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings,’’ Proc. Steklov Inst. Math. 249 (2), 1–219 (2005).

    MathSciNet  MATH  Google Scholar 

  7. A. Anušić, H. Bruin, and J. Činč, ‘‘Topological properties of Lorenz maps derived from unimodal maps,’’ J. Differ. Equat. Appl. 26, 1174–1191 (2020).

    Article  MathSciNet  Google Scholar 

  8. S. S. Belmesova and L. S. Efremova, ‘‘On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map,’’ in Nonlinear Maps and their Applications: Selected Contributions from the NOMA 2013 International Workshop, Ed. by R. López-Ruiz, D. Fournier-Prunaret, Y. Nishio, and C. Grácio, Vol. 112 of Springer Proceedings in Mathematics and Statistics (Springer, Cham, 2015), pp. 127–158.

  9. E. V. Blinova and L. S. Efremova, ‘‘On \(\Omega\)-blow-ups in the simplest \(C^{1}\)-smooth skew products of interval mappings,’’ J. Math. Sci. (N. Y.) 157, 456–465 (2009).

    Article  MathSciNet  Google Scholar 

  10. S. V. Bolotin and V. V. Kozlov, ‘‘Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom,’’ Izv. Math. 81, 671–687 (2017).

    Article  MathSciNet  Google Scholar 

  11. N.-B. Dang, R. Grigorchuk, and M. Lyubich, ‘‘Self-similar groups and holomorphic dynamics: Renormalization, integrability, and spectrum,’’ arXiv: 2010.00675v2 (2021).

  12. L. S. Efremova, ‘‘Differential properties and attracting sets of a simplest skew product of interval maps,’’ Sb. Math. 201, 873–907 (2010).

    Article  MathSciNet  Google Scholar 

  13. L. S. Efremova, ‘‘Space of \(C^{1}\)-smooth skew products of maps of an interval,’’ Theor. Math. Phys. 164, 1208–1214 (2010).

    Article  Google Scholar 

  14. L. S. Efremova, ‘‘A decomposition theorem for the space of \(C^{1}\)-smooth skew products with complicated dynamics of the quotient map,’’ Sb. Math. 204, 1598–1623 (2013).

    Article  MathSciNet  Google Scholar 

  15. L. S. Efremova, ‘‘Dynamics of skew products of maps of an interval,’’ Russ. Math. Surv. 72, 101–178 (2017).

    Article  MathSciNet  Google Scholar 

  16. L. S. Efremova, ‘‘Small \(C^{1}\)-smooth perturbations of skew products and the partial integrability property,’’ Appl. Math. Nonlin. Sci. 5, 317–328 (2020).

    Google Scholar 

  17. L. S. Efremova, ‘‘The trace map and integrability of the multifunctions,’’ J. Phys.: Conf. Ser. 990, 012003 (2018).

    MathSciNet  Google Scholar 

  18. L. S. Efremova, ‘‘Small perturbations of smooth skew products and Sharkovsky’s theorem,’’ J. Differ. Equat. Appl. 26, 1192–1211 (2020).

    Article  MathSciNet  Google Scholar 

  19. L. S. Efremova, ‘‘Periodic behavior of maps obtained by small perturbations of smooth skew products,’’ Discontinuity, Nonlinearity, Complexity 9, 519–523 (2020).

    Article  Google Scholar 

  20. L. S. Efremova and E. N. Makhrova, ‘‘One-Dimensional Dynamical Systems,’’ Rus. Math. Surv. 76 (5), 55 (2021).

    MathSciNet  Google Scholar 

  21. R. Grigorchuk and S. Samarakoon, ‘‘Integrable and chaotic systems associated with fractal groups,’’ Entropy 23, 237 (2021).

    Article  MathSciNet  Google Scholar 

  22. R. I. Grigorchuk and A. Zuk, ‘‘The lamplighter group as a group generated by a 2-state automaton, and its spectrum,’’ Geom. Dedicata 87, 209–244 (2001).

    Article  MathSciNet  Google Scholar 

  23. F. Hofbauer, ‘‘Periodic points for piecewise monotonic transformation,’’ Ergod. Th. Dyn. Syst. 5, 237–256 (1985).

    Article  MathSciNet  Google Scholar 

  24. P. E. Kloeden, ‘‘On Sharkovsky’s cycle coexistence ordering,’’ Bul. Austr. Math. Soc. 20, 171–177 (1979).

    Article  MathSciNet  Google Scholar 

  25. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Graylock Press, Rochester, 1957), Vol. 1.

    Google Scholar 

  26. V. V. Kozlov, ‘‘Tensor invariants and integration of differential equations,’’ Russ. Math. Surv. 74, 111–140 (2019).

    Article  MathSciNet  Google Scholar 

  27. V. V. Kozlov and D. V. Treschev, ‘‘Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics,’’ Sb. Math. 207, 1435–1449 (2016).

    Article  MathSciNet  Google Scholar 

  28. K. Kuratowski, Topology (Academic Press, New York, 1966), Vol. 1.

    MATH  Google Scholar 

  29. D. Rand, ‘‘The topological classification of Lorenz attractors,’’ Math. Proc. Cambridge Phil. Soc. 83, 451–460 (1978).

    Article  MathSciNet  Google Scholar 

  30. A. N. Sharkovsky, ‘‘Coexistence of cycles of a continuous mapping of the line into itself,’’ Ukr. Mat. Zh. 16, 61–71 (1964).

    Google Scholar 

  31. A. N. Sharkovskii, ‘‘Coexistence of cycles of a continuous map of the line into itself,’’ Bifurc. Chaos 5, 1263–1273 (1995).

    Article  MathSciNet  Google Scholar 

  32. Yu. B. Suris, ‘‘Integrable mappings of the standard type,’’ Funct. Anal. Appl. 23, 74–76 (1989).

    Article  MathSciNet  Google Scholar 

  33. A. P. Veselov, ‘‘Integrable maps,’’ Russ. Math. Surv. 46 (5), 1–51 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Efremova.

Additional information

(Submitted by E. A. Turilova)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, L.S. Geometrically Integrable Maps in the Plane and Their Periodic Orbits. Lobachevskii J Math 42, 2315–2324 (2021). https://doi.org/10.1134/S1995080221100073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100073

Keywords:

Navigation