Skip to main content
Log in

Theories of Rogers Semilattices of Analytical Numberings

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper studies Rogers semilattices, i.e. upper semilattices induced by the reducibility between numberings. Under the assumption of Projective Determinacy, we prove that for every non-zero natural number \(n\), there are infinitely many pairwise elementarily non-equivalent Rogers semilattices for \(\Sigma^{1}_{n}\)-computable families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. L. Ershov, Theory of Numberings (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  2. Yu. L. Ershov, ‘‘Theory of numberings,’’ in Handbook of Computability Theory, Stud. Logic Found. Math. 140, 473–503 (1999).

  3. S. A. Badaev and S. S. Goncharov, ‘‘Theory of numberings: Open problems,’’ in Computability Theory and Its Applications, Contemp. Math. 257, 23–38 (2000).

    Article  Google Scholar 

  4. S. S. Goncharov and A. Sorbi, ‘‘Generalized computable numerations and nontrivial Rogers semilattices,’’ Algebra Logic 36, 359–369 (1997).

    Article  MathSciNet  Google Scholar 

  5. S. A. Badaev, S. S. Goncharov, and A. Sorbi, ‘‘Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy,’’ Algebra Logic 45, 361–370 (2006).

    Article  MathSciNet  Google Scholar 

  6. S. Badaev and S. Goncharov, ‘‘Computability and numberings,’’ in New Computational Paradigms (Springer, New York, 2008), pp. 19–34.

    Google Scholar 

  7. N. Bazhenov, M. Mustafa, and M. Yamaleev, ‘‘Elementary theories and hereditary undecidability for semilattices of numberings,’’ Arch. Math. Logic 58, 485–500 (2019).

    Article  MathSciNet  Google Scholar 

  8. S. S. Goncharov, S. Lempp, and D. R. Solomon, ‘‘Friedberg numberings of families of n-computably enumerable sets,’’ Algebra Logic 41 (2), 81–86 (2002).

    Article  MathSciNet  Google Scholar 

  9. S. A. Badaev and S. Lempp, ‘‘A decomposition of the Rogers semilattice of a family of d. c. e. sets,’’ J. Symb. Logic 74, 618–640 (2009).

    Article  MathSciNet  Google Scholar 

  10. I. Herbert, S. Jain, S. Lempp, M. Mustafa, and F. Stephan, ‘‘Reductions between types of numberings,’’ Ann. Pure Appl. Logic 170, 102716 (2019).

  11. M. V. Dorzhieva, ‘‘Undecidability of elementary theory of Rogers semilattices in analytical hierarchy,’’ Sib. Elektron Mat. Izv. 13, 148–153 (2016).

    MathSciNet  MATH  Google Scholar 

  12. N. Bazhenov, S. Ospichev, and M. Yamaleev, ‘‘Isomorphism types of Rogers semilattices in the analytical hierarchy,’’ arXiv:1912.05226.

  13. N. Bazhenov and M. Mustafa, ‘‘Rogers semilattices in the analytical hierarchy: The case of finite families,’’ arXiv:2010.00830.

  14. N. A. Bazhenov, M. Mustafa, S. S. Ospichev, and M. M. Yamaleev, ‘‘Numberings in the analytical hierarchy,’’ Algebra Logic 59, 404–407 (2020).

    Article  MathSciNet  Google Scholar 

  15. V. V. V’yugin, ‘‘On some examples of upper semilattices of computable enumerations,’’ Algebra Logic 12, 287–296 (1973).

    Article  Google Scholar 

  16. S. A. Badaev, S. S. Goncharov, and A. Sorbi, ‘‘Elementary theories for Rogers semilattices,’’ Algebra Logic 44, 143–147 (2005).

    Article  MathSciNet  Google Scholar 

  17. J. W. Addison and Y. N. Moschovakis, ‘‘Some consequences of the axiom of definable determinateness,’’ Proc. Natl. Acad. Sci. U. S. A. 59, 708–712 (1968).

    Article  MathSciNet  Google Scholar 

  18. H. Tanaka, ‘‘Recursion theory in analytical hierarchy,’’ Comment. Math. Univ. St. Pauli 27, 113–132 (1978).

    MathSciNet  MATH  Google Scholar 

  19. G. Kreisel and G. E. Sacks, ‘‘Metarecursive sets,’’ J. Symbol. Logic 30, 318–338 (1965).

    Article  MathSciNet  Google Scholar 

  20. S. Badaev, S. Goncharov, and A. Sorbi, ‘‘Isomorphism types and theories of Rogers semilattices of arithmetical numberings,’’ in Computability and Models (Springer, New York, 2003), pp. 79–92.

    Google Scholar 

Download references

Funding

The work was supported by Nazarbayev University Faculty Development Competitive Research Grants 021220FD3851. The work of N. Bazhenov was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0002). M. Mustafa was also partially supported by MESRK grant no. AP08856834. Part of the research contained in this paper was carried out while N. Bazhenov was visiting the Department of Mathematics of Nazarbayev University, Nur-Sultan. The authors wish to thank Nazarbayev University for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Bazhenov, M. Mustafa or Zh. Tleuliyeva.

Additional information

(Submitted by I. Sh. Kalimullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, N.A., Mustafa, M. & Tleuliyeva, Z. Theories of Rogers Semilattices of Analytical Numberings. Lobachevskii J Math 42, 701–708 (2021). https://doi.org/10.1134/S1995080221040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221040065

Keywords:

Navigation