Skip to main content

Advertisement

Log in

Reliable a Posteriori Error Estimation for Cosserat Elasticity in 3D

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new a posteriori error estimate for Cosserat elasticity is proposed. Paper continues implementations of functional approach to error estimation for planar problems of classical and Cosserat elasticity. The proposed majorant is reliable regardless of some additional assumptions (for instance, the Galerkin orthogonality). This property is preserved independently of methods used for solving a problem, and the estimate is valid for accuracy control of any conforming approximate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Cosserat and F. Cosserat, Théorie des corps déformables (A. Hermann, Paris, 1909).

    MATH  Google Scholar 

  2. M. Ostoja-Starzewski and I. Jasiuk, ‘‘Stress invariance in planar Cosserat elasticity,’’ Proc. R. Soc. London, Ser. A 451 (1942), 453–470 (1995).

  3. J. Altenbach, H. Altenbach, and V. A. Eremeyev, ‘‘On generalized Cosserat-type theories of plates and shells: A short review and bibliography,’’ Arch. Appl. Mech. 80, 73–92 (2010).

    Article  Google Scholar 

  4. G. A. Maugin, ‘‘A historical perspective of generalized continuum mechanics,’’ in Mechanics of Generalized Continua, Vol. 7 of Advanced Structured Materials (Springer, Berlin, Heidelberg, 2011), pp. 3–19.

  5. V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer Briefs in Applied Sciences and Technology, Continuum Mechanics (Springer, Berlin, 2013).

    Google Scholar 

  6. W. Nowacki, Theory of Micropolar Elasticity (Springer, Wien, 1970).

    Book  Google Scholar 

  7. N. F. Morozov, Mathematical Problems of Crack Theory (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  8. I. Hlaváček and M. Hlaváček, ‘‘On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I. Cosserat continuum,’’ Appl. Math. 14, 387–410 (1969).

    Article  MathSciNet  Google Scholar 

  9. J. Jeong and P. Neff, ‘‘Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions,’’ Math. Mech. Solids 15, 78–95 (2010).

    Article  MathSciNet  Google Scholar 

  10. A. Riahi and J. H. Curran, ‘‘Full 3D finite element Cosserat formulation with application in layered structures,’’ Appl. Math. Model. 33, 3450–3464 (2009).

    Article  MathSciNet  Google Scholar 

  11. O. V. Sadovskaya, ‘‘Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions,’’ Comput. Math. Math. Phys. 49, 304–313 (2009).

    Article  MathSciNet  Google Scholar 

  12. Z. Q. Xie, H. W. Zhang, and B. S. Chen, ‘‘A finite element model for 3D frictional contact analysis of Cosserat materials,’’ Finite Elem. Anal. Des. 57, 92–102 (2012).

    Article  MathSciNet  Google Scholar 

  13. D. Perić, J. Yu, and D. R. J. Owen, ‘‘On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua,’’ Int. J. Numer. Methods Eng. 37, 1351–1379 (1994).

    Article  MathSciNet  Google Scholar 

  14. S. Repin, ‘‘A posteriori error estimation for variational problems with uniformly convex functionals,’’ Math. Comput. 69, 481–500 (2000).

    Article  MathSciNet  Google Scholar 

  15. P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates, Vol. 33 of Studies in Mathematics and its Applications (Elsevier, Amsterdam, 2004).

  16. S. Repin, A Posteriori Estimates for Partial Differential Equations, vol. 4 of Radon Series on Computational and Applied Mathematics (de Gruyter, Berlin, 2008).

  17. O. Mali, P. Neittaanmäki, and S. Repin, Accuracy Verification Methods. Theory and Algorithms (Springer, Dordrecht, 2014).

    Book  Google Scholar 

  18. S. Repin and M. Frolov, ‘‘Estimates for deviations from exact solutions to plane problems in the Cosserat theory of elasticity,’’ J. Math. Sci. 181, 281–291 (2012).

    Article  MathSciNet  Google Scholar 

  19. M. Frolov, ‘‘Functional a posteriori estimates of the error in the solutions of plane problems in Cosserat elasticity theory,’’ J. Appl. Math. Mech. 78, 425–431 (2014).

    Article  MathSciNet  Google Scholar 

  20. M. Frolov, ‘‘Reliable a posteriori error estimation for plane problems in Cosserat elasticity,’’ in Numerical Mathematics and Advanced Applications—ENUMATH 2013, Lect. Notes Comput. Sci. Eng. 103, 225–232 (2015).

  21. M. Churilova, ‘‘Analysis of marking criteria for mesh adaptation in Cosserat elasticity,’’ MATEC Web Conf. 245, 08004 (2018). https://doi.org/10.1051/matecconf/201824508004

  22. V. V. Eliseev, Mechanics of Elastic Bodies (SPb. Gos. Politekh. Univ., St. Petersburg, 1999) [in Russian].

  23. M. Kulesh, V. Matveenko, and I. Shardakov, ‘‘Exact analytical solution of the Kirsch problem within the framework of the Cosserat continuum and pseudocontinuum,’’ J. Appl. Mech. Tech. Phys. 42, 687–695 (2001).

    Article  Google Scholar 

  24. D. Ieşan, ‘‘Saint-Venant’s problem for Cosserat elastic bodies,’’ Lect. Notes Math. 1279, 95–147 (1987).

    Article  Google Scholar 

  25. H. W. Zhang, H. Wang, P. Wriggers, and B. A. Schrefler, ‘‘A finite element model for contact analysis of multiple Cosserat bodies,’’ Comput. Mech. 36, 444–458 (2005).

    Article  Google Scholar 

  26. S. Hassanpour and G. R. Heppler, ‘‘Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations,’’ Math. Mech. Solids 22, 224–242 (2017).

    Article  MathSciNet  Google Scholar 

  27. A. Yavari, S. Sarkani, and E. T. Moyer, Jr., ‘‘On fractal cracks in micropolar elastic solids,’’ ASME J. Appl. Mech. 69, 45–54 (2002).

    Article  Google Scholar 

  28. V. A. Lubarda, ‘‘The effects of couple stresses on dislocation strain energy,’’ Int. J. Solids Struct. 40, 3807–3826 (2003).

    Article  Google Scholar 

  29. A. J. Beveridge, M. A. Wheel, and D. H. Nash, ‘‘Computational modelling and experimental characterisation of heterogeneous materials,’’ in Materials with Complex Behaviour, Vol. 3 of Advanced Structured Materials (Springer, Berlin, Heidelberg, 2010), pp. 257–268.

Download references

Funding

This work was supported by the Grant of the President of the Russian Federation MD-1071.2017.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Frolov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, M.E. Reliable a Posteriori Error Estimation for Cosserat Elasticity in 3D. Lobachevskii J Math 42, 96–103 (2021). https://doi.org/10.1134/S1995080221010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221010121

Keywords:

Navigation