Skip to main content
Log in

Personalized Computational Evaluation of Physical Endurance in a Treadmill Test with Increasing Load

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we propose a model of the transport and balance of blood gases and lactate in the blood. The model includes regulation of the respiratory minute volume and cardiac output basing on the partial pressures of oxygen and carbon dioxide in the central and peripheral regulators. The model consists of lumped compartments, which represent the lungs and parts of the circulatory system. For each blood compartment, we solve the equations of haemoglobin oxygenation, acid-base balance, aerobic and anaerobic energy production and consumption, lactate production and utilisation. The treadmill test with increasing load gives input parameters to the model. The model allows simulations of metabolic parameters of athletes during prolonged moderate physical exercise and evaluates their physical endurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. C. J. Roth, M. Ismail, L. Yoshihara and W. A. Wall, ‘‘A comprehensive computational human lung model incorporating inter–acinar dependencies: Application to spontaneous breathing and mechanical ventilation,’’ Int. J. Numer. Methods Biomed. Eng. 33, 1–24 (2017).

    Article  Google Scholar 

  2. A. Comerford, C. Förster, and W. A. Wall, ‘‘Structured tree impedance outflow boundary conditions for 3D lung simulations,’’ J. Biomech. Eng. 132 (8), 1–10 (2010).

    Article  Google Scholar 

  3. W. A. Wall and T. Rabczuk, ‘‘Fluid structure interaction in lower airways of CT-based lung geometries,’’ Int. J. Numer. Methods Fluids 57, 653–675 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. S. Kholodov, ‘‘Some dynamical models of multi-dimensional problems of respiratory and circulatory systems including their interaction and matter transport,’’ in Computer Models and Medicine Progress (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  5. S. S. Simakov and A. S. Kholodov, ‘‘Computational analysis of acoustical impacts to the lungs function and pulmonary circulation,’’ in Medicine in the Mirror of Informatics (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  6. S. S. Simakov and A. S. Kholodov, ‘‘Computational study of oxygen concentration in human blood under low frequency disturbances,’’ Math. Models Comput. Simul. 1, 283–295 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Golov, S. Simakov, Y. N. Soe, R. Pryamonosov, O. Mynbaev, and A. Kholodov, ‘‘Multiscale CT-Based computational modeling of alveolar gas exchange during artificial lung ventilation, cluster (Biot) and periodic (Cheyne–Stokes) breathings and bronchial asthma attack,’’ Computation 5 (1), 11.1–18 (2017).

  8. J. Bates, Lung Mechanics: An Inverse Modeling Approach (Cambridge Univ. Press, New York, 2009).

    Book  Google Scholar 

  9. L. Yoshihara, M. Ismail, and W. A. Wall, ‘‘Bridging scales in respiratory mechanics,’’ in Computer Models in Biomechanics (Springer, Berlin, 2013), pp. 395–407.

    Google Scholar 

  10. Yu. Vassilevskii, M. Olshanskii, S. Simakov, A. Danilov, and A. Kolobov, Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy (Academic, New York, 2020).

    Google Scholar 

  11. S. Simakov, ‘‘Modern methods of mathematical modeling of blood flow using reduced order methods,’’ Comput. Res. Model. 10, 581–604 (2018).

    Article  Google Scholar 

  12. N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevski, and V. Volpert, ‘‘Methods of blood flow modelling,’’ Math. Model. Nat. Phenom. 11, 1–25 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Zhang, S. Noda, R. Himeno, and H. Liu, ‘‘Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis,’’ Acta Mech. Sin. 33, 595–618 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. T. Ottesen and M. Danielsen, ‘‘A cardiovascular model,’’ in Applied Mathematical Models in Human Physiology (SIAM, Philadelphia, 2004).

    Book  Google Scholar 

  15. R. Dash and J. B. Bassingthwaighte, ‘‘Erratum to: Blood \(HbO_{2}\) and \(HbCO_{2}\) dissociation curves at varied \(O_{2}\), \(CO_{2}\), pH, 2,3- DPG and temperature levels,’’ Ann. Biomed. Eng. 38, 1683–1701 (2010).

    Article  Google Scholar 

  16. P. R. Trenhago, L. G. Fernandes, L. O. Müller, P. J. Blanco, and R. A. Feijóo, ‘‘An integrated mathematical model of the cardiovascular and respiratory systems,’’ Int. J. Numer. Methods Biomed. Eng. 1, 1–25 (2016).

    MathSciNet  Google Scholar 

  17. L. G. Fernandes, P. R. Trenhago, R. A. Feijóo, and P. J. Blanco, ‘‘Integrated cardiorespiratory system model with short timescale control mechanisms,’’ Int. J. Numer. Methods Biomed. Eng., e3332 (2020).

  18. A. Ben-Tal and M. H. Tawhai, ‘‘Integrative approaches for modeling regulation and function of the respiratory system,’’ WIREs Syst. Biol. Med. 5, 687–699 (2013).

    Google Scholar 

  19. Z. L. Topor, M. Pawlicki, and J. E. Remmers, ‘‘A computational model of the human respiratory control system: Responses to hypoxia and hypercapnia,’’ Ann. Biomed. Eng. 32, 1530–1545 (2004).

    Article  Google Scholar 

  20. M. B. Wolf and R. P. Garner, ‘‘A mathematical model of human respiration at altitude,’’ Ann. Biomed. Eng. 35, 2003–2022 (2007).

    Article  Google Scholar 

  21. L. Duffin, R. M. Mohan, P. Vasiliou, R. Stephenson, and S. Mahamed, ‘‘A model of the chemoreflex control of breathing in humans: Model parameters measurement,’’ Respir. Physiol. 120, 13–26 (2000).

    Article  Google Scholar 

  22. N. Lai, H. Zhou, G. M. Saidel, M. Wolf, K. McCully, L. B. Gladden, and M. E. Cabrera, ‘‘Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near–infrared spectroscopy,’’ J. Appl. Physiol. 106, 1858–1874 (2009).

    Article  Google Scholar 

  23. J. F. Moxnes, K. Hausken, and O. Sandbakk, ‘‘On the kinetics of anaerobic power,’’ Theor. Biol. Med. Model. 9 (29), 1–20 (2012).

    Article  Google Scholar 

  24. P. G. B. Calderona, M. Habibb, F. Kappelc, and A. A. de Los Reyes, ‘‘Control aspects of the human cardiovascular–respiratory system under a nonconstant workload,’’ Math. Biosci. 289, 142–152 (2017).

    Article  MathSciNet  Google Scholar 

  25. P. G. B. Calderona, M. Habibb, F. Kappelc, and A. A. de Los Reyes, ‘‘Lactate metabolism during exercise: Analysis by an integrative systems model,’’ Am. J. Physiol. 277, R1522–R1536 (1999).

    Google Scholar 

  26. A. V. Golov and S. S. Simakov, ‘‘Mathematical model of respiratory regulation during hypoxia and hypercapnia,’’ Comput. Res. Model. 2, 297–310 (2017).

    Article  Google Scholar 

  27. A. I. Dyachenko, ‘‘Study of one-compartment model of lungs mechanics,’’ Med. Biomekh. 2, 147–152 (1986).

    Google Scholar 

  28. L. Ellwein, S. Pope, A. Xie, J. Batzel, C. Kelley, and M. Olufsen, ‘‘Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia,’’ Math. Biosci. 241, 256–274 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Lu, J. W. Clark, F. H. Ghorbel, D. L. Ware, and A. Bidani, ‘‘A human cardiopulmonary system model applied to the analysis of the valsalva maneuver,’’ Am. J. Physiol.—Heart Circul. Physiol. 281, 2661–2679 (2001).

    Article  Google Scholar 

  30. R. F. Schmidt and G. Thews, Human Physiology, 2nd ed. (Springer, Berlin, 1989), Vol. 2.

    Book  Google Scholar 

  31. R. N. Pittman, Regulation of Tissue Oxygenation, 2nd ed. (Biota Publ., 2016).

    Google Scholar 

  32. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology, 10th ed. (W. B. Saunders, Philadelphia, 2000).

    Google Scholar 

  33. R. H. Morton, J. R. Fitz-Clarke, and E. W. Banister, ‘‘Modeling human performance in running,’’ J. Appl. Physiol. 69, 1171–1177 (1990).

    Article  Google Scholar 

  34. P. di Prampero, ‘‘Energetics of muscular exercise,’’ Rev. Physiol. Biochem. Pharmacol. 89, 144–222 (1981).

    Google Scholar 

  35. P. E. di Prampero and G. Ferretti, ‘‘The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts,’’ Respir. Physiol. 118, 103–115 (1999).

    Article  Google Scholar 

  36. J. Takala, ‘‘Oxygen consumption and carbon dioxide production: physiological basis and practical application in intensive care,’’ in Anaesthesia, Pain, Intensive Care and Emergency MedicineA.P.I.C.E., Proceedings of the 19th Postgraduate Course in Critical Care Medicine Trieste, Italy, Ed. by A. Gullo (Springer, Milano, 1997), pp. 155–162.

  37. R. Maughan, M. Gleeson, and P. L. Greenhaff, Biochemistry of Exercise and Training (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  38. H. H. Dukes, Dukes’ Physiology of Domestic Animals, 13th ed. (Wiley Blackwell, Oxford, 2015).

    Google Scholar 

  39. R. Storn and K. Price, ‘‘Differential evolution "— a simple and efficient heuristic for global optimization over continuous spaces,’’ J. Global Optimiz. 11, 341–359 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  40. Documentation of the Function Implementing Differential Evolution Algorithm. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html. Accessed 2020.

  41. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Vol. 14 of Springer Series in Computational Mathematics (Springer, Berlin, 1991).

  42. J. C. Butcher and P. Sehnalová, ‘‘Predictor–corrector Obreshkov pairs,’’ Computing 95, 355–371 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. S. Kholodov, A. I. Lobanov, and A. V. Evdokimov, Numerical Schemes for Solvning Stiff Ordinary Differential Equations in the Space of Undetermined Coefficients (MIPT, Moscow, 1985) [in Russian].

    Google Scholar 

  44. J.-P. Kreiss and S. N. Lahiri, ‘‘Bootstrap methods for time series,’’ Time Ser. Anal.: Methods Appl. 30, 3–26 (2012).

    Google Scholar 

  45. R. Margaria, H. T. Edwards, and D. B. Dill, ‘‘The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction,’’ Am. J. Physiol. 106, 689–715 (1993).

    Article  Google Scholar 

  46. D. Böning, N. Maassen, and M. Steinach, ‘‘The efficiency of muscular exercise,’’ Deutsche Zeitschr. Sportmed. 68, 203–214 (2017).

    Article  Google Scholar 

  47. C. Bosco, G. Montanari, R. Ribacchi, et al., ‘‘Relationship between the efficiency of muscular work during jumping and the energetics of running,’’ Eur. J. Appl. Physiol. 56, 138–143 (1987).

    Article  Google Scholar 

  48. G. A. Gaesser and A. Brooks, ‘‘Muscular efficiency during steady-rate exercise: Effects of speed and work rate,’’ J. Appl. Physiol. 38, 1132–1139 (1975).

    Article  Google Scholar 

  49. T. Gamilov and S. Simakov, ‘‘Blood flow under mechanical stimulations,’’ in Proceedings of the 12th International Symposium of Computer Science in Sports, Adv. Intell. Syst. Comput. 1028, 143–150 (2020).

  50. S. Simakov, T. Gamilov, and Y. N. Soe, ‘‘Computational study of blood flow in lower extremities under intense physical load,’’ Russ. J. Numer. Anal. Math. Model. 28, 485–503 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Golov or S. S. Simakov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golov, A.V., Simakov, S.S. Personalized Computational Evaluation of Physical Endurance in a Treadmill Test with Increasing Load. Lobachevskii J Math 41, 2648–2663 (2020). https://doi.org/10.1134/S1995080220120112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220120112

Keywords:

Navigation