Skip to main content
Log in

Complex Waves in Dielectric Layer

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The propagation of monochromatic TE-polarized waves in a partially shielded dielectric layer is considered. The existence of infinitely many complex leaky waves is proved as well as the absence of complex surface waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. V. Shestopalov and Yu. Shestopalov, Spectral Theory and Excitation of Open Structures (IET, London, 1996).

    Book  Google Scholar 

  2. G. Hanson and A. Yakovlev, Operator Theory for Electromagnetics: An Introduction (Springer, New York, 2002).

    Book  Google Scholar 

  3. M. J. Adams, An Itroduction to Optical Waveguide (Wiley, New York, 1981).

    Google Scholar 

  4. A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

    Google Scholar 

  5. L. A. Vainshtein, Electromagnetic Waves (Sovetskoe Radio, Moscow, 1957) [in Russian].

  6. D. Marcuse, Light Transmission Optics (Krieger, London, 1989).

    Google Scholar 

  7. W.-P. Yuen, ‘‘A simple numerical analysis of planar optical waveguides using wave impedance transformation,’’ IEEE Photon. Technol. Lett. 5 (8) (1993).

  8. R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, ‘‘Mode determination for planar waveguides using the four-sheeted dispersion relation,’’ IEEE J. Quantum Electron.28, 1520–1526 (1992).

    Article  Google Scholar 

  9. A. A. Shishegar and S. Safavi-Naeini, ‘‘A hybrid analysis method for planar lens-like structures,’’ inProceedings of the IEEE Antennas and Propagation Society International Symposium, 1996.

  10. R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE, New York, 1990).

    Book  Google Scholar 

  11. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Wiley-IEEE, New York, 1994).

    Book  Google Scholar 

  12. Yu. G. Smirnov, ‘‘Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides,’’ Comput. Math. Math. Phys. 55, 461–469 (2015).

    Article  MathSciNet  Google Scholar 

  13. Yu. G. Smirnov and E. Smolkin, ‘‘Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide,’’ Differ. Equat. 53, 1168–1179 (2018).

    Article  MathSciNet  Google Scholar 

  14. Yu. G. Smirnov, E. Smolkin, and M. O. Snegur, ‘‘Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization,’’ Comput. Math. Math. Phys. 58, 1887–1901 (2018).

    Article  MathSciNet  Google Scholar 

  15. Yu. G. Smirnov and E. Smolkin, ‘‘Operator function method in the problem of normal waves in an inhomogeneous waveguide,’’ Differ. Equat. 54, 1262–1273 (2017).

    Article  MathSciNet  Google Scholar 

  16. Yu. G. Smirnov and E. Smolkin, ‘‘Investigation of the spectrum of the problem of normal waves in a closed regular inhomogeneous dielectric waveguide of arbitrary cross section,’’ Dokl. Math. 97, 86–89 (2017).

    Article  Google Scholar 

  17. G. W. Hanson and A. B. Yakovlev, ‘‘Investigation of mode interaction on planar dielectric waveguides with loss and gain,’’ Radio Sci. 34, 1349–1359 (1999).

    Article  Google Scholar 

  18. A. N. Tikhonov and A. A. Samarskii, ‘‘On the excitation of radio waves. I,’’ Zh. Tekh. Fiz. 17, 1283–1296 (1947).

    Google Scholar 

  19. A. N. Tikhonov and A. A. Samarskii, ‘‘On the excitation of radio waves. II,’’ Zh. Tekh. Fiz. 17, 1431–1440 (1947).

    Google Scholar 

  20. A. N. Tikhonov and A. A. Samarskii, ‘‘On the representation of the field in a waveguide as a sum of the fields TE and TM,’’ Zh. Tekh. Fiz. 18, 959–970 (1948).

    Google Scholar 

  21. Y. Shestopalov and Y. Smirnov, ‘‘Eigenwaves in waveguides with dielectric inclusions: Spectrum,’’ Applicable Anal. 93, 408–427 (2014).

    Article  MathSciNet  Google Scholar 

  22. Y. Shestopalov and Y. Smirnov, ‘‘Eigenwaves in waveguides with dielectric inclusions: Completeness,’’ Applicable Anal. 93, 1824–1845 (2014).

    Article  MathSciNet  Google Scholar 

  23. Y. Shestopalov and E. Kuzmina, ‘‘On a rigorous proof of the existence of complex waves in a dielectric waveguide of circular cross section,’’ Prog. Electromagn. Res. B 82, 137–164 (2018).

    Article  Google Scholar 

  24. D. M. Pozar, Microwave Engineering (Wiley, New York, 2011).

    Google Scholar 

  25. N. Marcuvitz, ‘‘On field representations in terms of leaky modes or eigenmodes,’’ IRE Trans. Antennas Propag.4, 192–194 (1956).

    Article  Google Scholar 

  26. A. A. Oliner, ‘‘Leaky waves: Basic properties and applications,’’ in Proceedings of the Asia-Pacific Microwave Conference (1997), Vol. 1, pp. 397–400.

  27. F. Monticone and A. Alu, ‘‘Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies,’’ Proc. IEEE 103, 793–821 (2015).

    Article  Google Scholar 

  28. G. A. Korn and N. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (General Publ., New York, 2000).

    MATH  Google Scholar 

  29. Y. G. Smirnov and D. V. Valovik, ‘‘Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity,’’ Phys. Rev. A 91, 013840 (2015).

Download references

Funding

The reported study was funded by Russian Foundation of Basic Research, project no. 19-31-51004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. Smirnov or E. Smolkin.

Appendix

Appendix

The results presented below is well-known in general [2–6, 10, 11, 24]. We only refine the localization of solutions of DE. All results can be confirmed using graphical analysis of functions.

Propagating surface waves. Let \(\lambda=\alpha\), \(\alpha\in\mathbb{R}.\) Then equation (14) takes the form

$$\tan{\alpha h}+\dfrac{\alpha}{\!\!\!\!\!\!\phantom{x}{}_{\phantom{x}{}_{+}}\!\sqrt{\epsilon^{2}-\alpha^{2}}}=0.$$
(21)

Here and below sign \(\phantom{x}{}_{\phantom{x}{}_{+}}\!\sqrt{\,}\) denotes the arithmetic root.

Lemma 1. Equation (21) has no solution for \(\alpha^{2}>\epsilon^{2}\) . If \(m-1/2\leq\epsilon h/\pi\leq m+1/2\) then there exist \(m\geq 1\) nonzero positive (and \(m\) nonzero negative) roots of equation (21). The \(j\) th positive root \(\alpha_{j}\) is located so that

$$\dfrac{\pi}{2h}(2j-1)<\alpha_{j}<\dfrac{\pi j}{h}\quad(j=1,\dots,m-1),\quad\dfrac{\pi}{2h}(2m-1)<\alpha_{m}<\epsilon.$$

If \(0<\epsilon h/\pi\leq 1/2\) then there are no roots of equation (21).

Let \(\lambda=i\beta\), \(\beta\in\mathbb{R}.\) Then equation (14) takes the form

$$\tanh{\beta h}+\dfrac{\beta}{\!\!\!\!\!\!\phantom{x}{}_{\phantom{x}{}_{+}}\!\sqrt{\epsilon^{2}+\beta^{2}}}=0.$$
(22)

Lemma 2. Equation (22) has no nontrivial solution.

Propagating leaky waves. Let \(\lambda=\alpha\), \(\alpha\in\mathbb{R}.\) Taking into account (18) we can write (14) as

$$\tan{\alpha h}-\dfrac{\alpha}{\!\!\!\!\!\!\phantom{x}{}_{\phantom{x}{}_{+}}\!\sqrt{\epsilon^{2}-\alpha^{2}}}=0.$$
(23)

Equation (23) leads to the analysis of solutions of the equations \(\sin(z)=\pm z/(\epsilon h)\) under the conditions \(\tan{z}>0\) and \(0<z<\epsilon h\), which can be fulfilled graphically.

Lemma 3. Equation (23) has no solution for \(\alpha^{2}>\epsilon^{2}\) . Let \(z_{0}^{(j)}\) be the \(j\) th positive root of equation \(\tan{z}=z\) such that \(z_{0}^{(j)}<z_{0}^{(j+1)}\) , \(j=1,2,\dots\) and \(b_{0}^{(j)}=\sqrt{(z_{0}^{(j)})^{2}+1}\) . There are no roots of (23) for \(0<\epsilon h\leq 1\) and \(\pi/2\leq\epsilon h\leq b_{0}^{(1)}.\) If \(\epsilon h=b_{0}^{(n)}\) then there exist \(n\geq 1\) nonzero positive roots (and \(n\) nonzero negative roots) of equation (23); the \(j\) th root \(\alpha_{j}\) is located so that

$$\dfrac{\pi j}{h}<\alpha_{j}<\dfrac{\pi}{2h}(2j+1),\quad j=1,\dots,n.$$

If \(b_{0}^{(j)}<\epsilon h<\pi\left(2n+1\right)/2\) then there exist \(n+1\) , \(n\geq 1\) nonzero positive roots (and \(n+1\) nonzero negative roots) of (23); the \(j\) th root \(\alpha_{j}\) is located so that

$$\dfrac{\pi j}{h}<\alpha_{j}<\dfrac{\pi}{2h}(2j+1),\quad j=1,\dots,n-1,$$

and

$$\dfrac{\pi}{h}<\alpha_{n}<\dfrac{\pi}{2h}(2n+1),\quad\dfrac{\pi}{h}<\alpha_{n+1}<\dfrac{\pi}{2h}(2n+1).$$

If \(\pi\left(2n+1\right)/2\leq\epsilon h<b_{0}^{(n+1)}\) then there exist \(n\geq 1\) nonzero positive roots (and \(n\) nonzero negative roots) of equation (23); the \(j\) th root \(\alpha_{j}\) is located so that

$$\dfrac{\pi j}{h}<\alpha_{j}<\dfrac{\pi}{2h}(2j+1),\quad j=1,\dots,n.$$

Let \(\lambda=i\beta\), \(\beta\in\mathbb{R}.\) Then equation (14) takes the form

$$\tanh{\beta h}-\dfrac{\beta}{\!\!\!\!\!\!\phantom{x}{}_{\phantom{x}{}_{+}}\!\sqrt{\epsilon^{2}+\beta^{2}}}=0.$$
(24)

Lemma 4. Equation (24) has two nontrivial solutions \(\pm i\beta_{0}\) if \(\epsilon h<1\) . If \(\epsilon h>1\) then there are no nontrivial solutions of (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, Y., Smolkin, E. Complex Waves in Dielectric Layer. Lobachevskii J Math 41, 1396–1403 (2020). https://doi.org/10.1134/S1995080220070380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220070380

Keywords:

Navigation