Skip to main content
Log in

Multi-Agent Logics with Multi-Valuations and Intensional Logical Operations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a multi-agent logic based on linear temporal logic. This logic uses as the semantics relational temporal models with multi-valuations—the models have separate valuations for all agents. We introduce in the logical language two new intensional logical operations—plausible and dominates—to capture the feature of uncertainty. The main mathematical problem we are dealing with is the satisfiability problem. We solve it and find deciding algorithm. In the final part of paper we discuss interesting open problems for possible further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Wooldridge and A. Lomuscio, ‘‘Multi-Agent VSK Logic,’’ in Proceedings of the 7th European Workshop on Logics in Artificial Intelligence (JELIAI-2000) (Springer, Berlin, 2000).

  2. M. Wooldridge, ‘‘An automata-theoretic approach to multi-agent planning,’’ in Proceedings of the 1st European Workshop on Multi-agent Systems (EUMAS 2003) (Oxford Univ. Press, New York, 2003).

  3. M. Wooldridge, M. P. Huget, M. Fisher, and S. Parsons, ‘‘Model checking multi-agent systems: the MABLE language and its applications,’’ Int. J. Artif. Intell. Tools 15, 195–225 (2006).

    Article  Google Scholar 

  4. F. Belardinelli and A. Lomuscio, ‘‘Interactions between lnowledge and time in a first-order logic for multi-agent systems: completeness results,’’ J. Artif. Intell. Res. 45, 1–45 (2012).

    Article  Google Scholar 

  5. S. Babenyshev and V. Rybakov, ‘‘Logic of plausibility for discovery in multi-agent environment deciding algorithms,’’ Lect. Notes Comput. Sci. 5179, 210–217 (2008).

    Article  Google Scholar 

  6. S. Babenyshev and V. Rybakov, ‘‘Decidability of hybrid logic with local common knowledge based on Linear Temporal Logic LTL,’’ Lect. Notes Comput. Sci. 5028, 32–41 (2008).

    Article  MathSciNet  Google Scholar 

  7. S. Babenyshev and V. Rybakov, ‘‘Logic of discovery and knowledge: decision algorithm,’’ Lect. Notes Comput. Sci. 5178, 711–718 (2008).

    Article  Google Scholar 

  8. S. Babenyshev and V. Rybakov, ‘‘Describing evolutions of multi-agent systems,’’ Lect. Notes Comput. Sci. 5711, 38–45 (2009).

    Article  Google Scholar 

  9. V. V. Rybakov, ‘‘Linear Temporal Logic \(LTK_{K}\) extended by multi-agent logic \(K_{n}\) with interacting agents,’’ J. Logic Comput. 19, 989–1017 (2009).

    Article  MathSciNet  Google Scholar 

  10. R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Reasoning About Knowledge (MIT, Boston, MA, 1995).

    MATH  Google Scholar 

  11. D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds, ‘‘Temporal logic,’’ Math. Found. Comput. Asp. 1 (1994).

  12. D. M. Gabbay and I. M. Hodkinson, ‘‘An axiomatization of the temporal logic with Until and Since over the real numbers,’’ J. Logic Comput. 1, 229–260 (1990).

    Article  MathSciNet  Google Scholar 

  13. D. Gabbay and I. Hodkinson, ‘‘Temporal logic in context of databases,’’ in Logic and Reality, Essays on the legacy of Arthur Prior, Ed. by J. Copeland (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  14. M. Vardi, ‘‘An automata-theoretic approach to linear temporal logic,’’ in Proceedings of the Y. Banff Higher Order Workshop, 1995, pp. 238–266.

  15. M. Y. Vardi, ‘‘Reasoning about the past with two-way automata,’’ Lect. Notes Comput. Sci. 1443, 628–641 (1998).

    Article  MathSciNet  Google Scholar 

  16. J. F. A. K. van Benthem, The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse (Reidel, Dordrecht, 1982).

    MATH  Google Scholar 

  17. V. V. Rybakov, ‘‘Linear temporal logic with until and before on integer numbers, deciding algorithms,’’ Lect. Notes Comput. Sci. 3967, 322–334 (2006).

    Article  Google Scholar 

  18. S. Babenyshev and V. Rybakov, ‘‘Linear Temporal Logic LTL: basis for admissible rules,’’ J. Logic Comput. 21, 157–177 (2011).

    Article  MathSciNet  Google Scholar 

  19. V. Rybakov, ‘‘Non-transitive linear temporal logic and logical knowledge operations,’’ J. Logic Comput. 26, 945–958 (2016).

    Article  MathSciNet  Google Scholar 

  20. V. Rybakov, ‘‘Intransitive temporal multi-agent logic, knowledge and uncertainty, plausibility,’’ Lect. Notes Comput. Sci. 9537, 364–375 (2016).

    Article  MathSciNet  Google Scholar 

  21. V. V. Rybakov, ‘‘Linear temporal logic with until and next, logical consecutions,’’ Ann. Pure Appl. Logic 155, 32–45 (2008).

    Article  MathSciNet  Google Scholar 

  22. V. V. Rybakov, ‘‘Multi-modal and temporal logics with universal formula—reduction of admissibility to validity and unification,’’ J. Logic Comput. 18, 509–519 (2008).

    Article  MathSciNet  Google Scholar 

  23. S. Ghilardi, ‘‘Unification in intuitionistic logic,’’ J. Symbol. Logic 64, 859–880 (1999).

    Article  MathSciNet  Google Scholar 

  24. R. Iemhoff and G. Metcalfe, ‘‘Proof theory for admissible rules,’’ Ann. Pure Appl. Logic 159, 171–186 (2009).

    Article  MathSciNet  Google Scholar 

  25. E. Jerabek, ‘‘Admissible rules of Lukasiewicz logic,’’ J. Logic Comput. 20, 425–447 (2010).

    Article  MathSciNet  Google Scholar 

  26. E. Jerabek, Independent bases of admissible rules,’’ Logic J. IGPL 16, 249–267 (2008)

    Article  MathSciNet  Google Scholar 

  27. F. Baader and R. Küsters, ‘‘Unification in a description logic with transitive closure of roles,’’ Lect. Notes Comput. Sci. 2250, 217–232 (2001).

    Article  MathSciNet  Google Scholar 

  28. F. Baader and B. Morawska, ‘‘Unification in the description logic EL,’’ Logic. Methods Comput. Sci. 6 (3), 1–31 (2010).

    MathSciNet  MATH  Google Scholar 

  29. S. Ghilardi, ‘‘Unification through projectivity,’’ J. Logic Comput. 7, 733–752 (1997).

    Article  MathSciNet  Google Scholar 

  30. V. Rybakov, ‘‘Logic of knowledge and discovery via interacting agents. Decision algorithm for true and satisfiable statements,’’ Inform. Sci. 179, 1608–1614 (2009).

    Article  MathSciNet  Google Scholar 

  31. V. Rybakov, ‘‘Multiagent temporal logics with multivaluations,’’ Sib. J. Math. 59, 710–720 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by Russian Foundation for Basic Research and Krasnoyarsk Regional Fund of Science, research project no. 18-41-240005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rybakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, V.V. Multi-Agent Logics with Multi-Valuations and Intensional Logical Operations. Lobachevskii J Math 41, 243–251 (2020). https://doi.org/10.1134/S1995080220020134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220020134

Keywords and phrases:

Navigation