Skip to main content
Log in

Mathematical Physics Branches: Identifying Mixed Type Equations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The article focuses on the problem of defining paradigmatic relations between definitions of certain fields in mathematical physics. The ultimate goal is to outline the hierarchical relations between the terms that can be used when searching on the mathematical resources along with additional classification parameters set in secondary documents. A thesaurus entry is selected as an information model. The thesaurus was formed by analyzing the original works of classics of mathematical analysis and differential calculus, and a representative list of articles was organized for that purpose. Following the example of thesaurus on the ‘problem of mixed type equations’ domain, a way of employing formulas in a mathematical article search is proposed. The paper covers a work script of a user, who is familiar with the subject domain and deals with papers done with the help of TeX-notation. A natural document indexing mechanism is set by key words in cited secondary documents. Such an approach helps to specify the search query with mathematical notation regardless the source language. The semantic links effect is based on usage of terms from the mathematical subject domain thesaurus stored with formulas that serve as a background for a mathematical search. It results in lower level of information noise and reduced search time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. Bond, The Era of Mathematics. https://epsrc.ukri.org/newsevents/pubs/era-of-maths/. Accessed 2019.

  2. R. Mayans, “The future of mathematical text: a proposal for a new internet hypertext for mathematics,” J. Digital Inform. 5 (1) (2006). https://journals.tdl.org/jodi/index.php/jodi/article/view/128/126. Accessed 2019.

  3. Interstate Standard. System of Standards on Information, Librarianship and Publishing. Search and Disseminate of Information. http://bibliography.ufacom.ru/method/gosts/7-73/7_73.htm. Accessed 2019.

  4. T. W. Cole, in Mathematics Databases, Encyclopedia of Library and Information Science, Ed. by M Drake (Marcel Dekker, New York, 2003), pp. 1792–1795.

    Google Scholar 

  5. Handbook of UDC. https://teacode.com/online/udc/. Accessed 2019.

  6. Mathematics Subject Classification. http://msc2010.org/mediawiki/index.php?title=MSC2010. Accessed 2019.

  7. Dewey Decimal Classification. https://www.oclc.org/en/dewey.html. Accessed 2019.

  8. State Rubricator of Scientific and Technical Information. http://grnti.ru/. Accessed 2019.

  9. E. I. Moiseev, A. A. Muromskii, and N. P. Tuchkova, Information Search with Thesaurus in Application Area of Ordinary Differential Equations (MAKS Press, Moscow, 2005) [in Russian].

    Google Scholar 

  10. Mathematical Encyclopedy, Ed. by I M Vinogradov (Sov. Encyclopedia, Moscow, 1979), Vol. 2 [in Russian]. https://dic.academic.ru/contents.nsf/enc_mathematics. Accessed 2019.

    Google Scholar 

  11. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, The School-Book, 6th ed. (Mosk. Gos. Univ., Moscow, 1999; Pergamon, Oxford, 1963).

    Google Scholar 

  12. A. G. Sveshnikov, A. N. Bogolubov, and V. V. Kravtsov, Lectures on Mathematical Physics, The School-Book (Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  13. V. A. Steklov, The Main Problems of Mathematical Physics (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  14. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981; Imported Publ., 1985).

    Google Scholar 

  15. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2: Partial Differential Equations (Wiley-VCH, Toronto, 2008). doi https://doi.org/10.1002/9783527617234.

    MATH  Google Scholar 

  16. M. M. Smirnov, Mixed Type Equations (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  17. A. V. Bitsadze, Equations of Mathematical Physics (Nauka, Moscow, 1982; Mir, Moscow, 1980).

    MATH  Google Scholar 

  18. V. A. Il’in and E. I. Moiseev, “A nonlocal boundary value problem of the second kind for the Sturm-Liouville operator,” Differ. Uravn. 23, 1422–1431 1987.

    MathSciNet  MATH  Google Scholar 

  19. E. I. Moiseev, A. A. Muromskij, and N. P. Tuchkova, Internet and Mathematical Knowledge: Representation of the Equations of Mathematical Physics in the Information-Search Environment (MAKS Press, Moscow, 2008) [in Russian].

    Google Scholar 

  20. I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  21. V. S. Volkov, Differential Equations and Their Applications in Natural Science (Leningr. Gos. Univ., Leningrad, 1961) [in Russian].

    Google Scholar 

  22. B. P. Demidovich and V. P. Modenov, Differential Equations, The School-Book (Ivan Fedorov, St. Peterburg, 2003) [in Russian].

    Google Scholar 

  23. N. S. Koshlaykov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics (Fizmatlit, Moscow, 1962) [in Russian].

    Google Scholar 

  24. S. L. Sobolev, Partial Differential Equations of Mathematical Physics (Nauka, Moscow, 1966; Pergamon, Oxford, 1964).

    Book  Google Scholar 

  25. V. A. Il’in and E. I. Moiseev, “Optimization of a boundary control by a displacement at one end of a string with second end free during an arbitrary sufficiently large time interval,” Dokl. Math. 76, 806–811 2007.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. P. Timoshenko and D. Goodier, Theory of Elasticity (McGraw-Hill Education, Columbus, 1970).

    MATH  Google Scholar 

  27. S. Lurie, P. Belov, and N. Tuchkova, “The application of the multiscale models for description of the dispersed composites,” Comput. Mater. Sci. A 36, 145–152 2004.

    Google Scholar 

  28. I. G. Petrowsky, Lectures on Partial Differential Equations (GNTL, Moscow, Leningrad, 1950; Dover, New York, 1992).

    Google Scholar 

  29. K. B. Sabitov, Equations of Mathematical Physics, The School-Book for Higher School (Vysshaya Shkola, Moscow, 2003) [in Russian].

    Google Scholar 

  30. F. Tricomi, Equazioni a derivate parziali (Cremonese, Roma, 1957) [in Italian].

    MATH  Google Scholar 

  31. L. Bers, F. John, and M. Schechter, Partial Differential Equations (Am. Math. Soc., Providence, 1971).

    Google Scholar 

  32. S. Gellerstedt, “Sur un probleme aux limites pour une equation lineaire aux derivees partielles du second ordre de type mixte,” Thesis (Almqvist och Wiksells, Uppsala, 1935).

    MATH  Google Scholar 

  33. F. Frankl, “Cauchy’s problem for partial differential equations of mixed elliptico-hyperbolic type with initial data on the parabolic line,” Izv. Akad. Nauk SSSR, Ser. Mat. 8, 195–224 1944.

    MathSciNet  MATH  Google Scholar 

  34. I. N. Vekua, New Methods for Solving Elliptical Equations (OGIZ Gostekhizdat, Moscow, 1948) [in Russian].

    Google Scholar 

  35. M. A. Lavrent’ev and A. V. Bitsadze, “To the problem of equations of mixed type,” Dokl. Akad. Nauk 70, 373–376 1950.

    MATH  Google Scholar 

  36. K. B. Babenko, “On the theory of equations of mixed type,” Doctoral Dissertation (Math. Inst. Acad. Sci. USSR, Moscow, 1952).

    Google Scholar 

  37. P. Germain and R. Bader, Problemes elliptiques et hyperboliques singuliers pour une equation du type mixte (O.N.E.R.A., Chatillon-sous-Bagneux, 1952), No. 60.

    Google Scholar 

  38. V. A. Serebryakov and O. M. Ataeva, “Information model of the open personal semantic library Libmeta,” in Proceedings of the 18th All-Russia Conference on Scientific Service on the Internet, Novorossijsk, Sept. 19–24, 2016 (IPM im. M. V. Keldysha RAN, Moscow, 2016), pp. 304–313.

    Google Scholar 

  39. E. I. Moiseev, A. A. Muromslij, and N. P. Tuchkova, “On the subject area thesaurus mixed equations of mathematical physics,” CEUR Workshop Proc. 2260, 395–405 2018.

    Google Scholar 

  40. E. I. Moiseev and T. N. Lihomanenko, “Eigenfunctions of the Tricomi problem with an inclined type change line,” Differ. Equat. 52, 1323–1330 2016.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. N. Moore, “Mooers Law, or why some retrieval systems are used and others are not,” Bull. Assoc. Inform. Sci. Technol., №23, 22–23 (1996). https://doi.org/10.1002/bult.37

  42. M. Kohlhase and I. A. Sucan, “A search engine for mathematical formulae,” in Proceedings of the Artificial Intelligence and Symbolic Computation, Lect. Notes Artif. Intell. (4120), 241–253 (2006).

  43. Intelligent Computer Mathematics, Proceedings of 10th International Conference, CICM 2017, Edinburgh, UK, July 17–21, 2017, Ed. by H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke, Vol. 18 of Lecture Notes in Artificial Intelligence (Springer, 2017).

Download references

Funding

The study was conducted according to the Russian Academy of Sciences work of ‘Mathematical methods of data analysis and forecasting’ and partially supported by Russian Foundation for Basic Research, projects nos. 17-07-00217a, 18-29-10085mk, 18-00-00297comfi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. M. Ataeva, V. A. Serebryakov or N. P. Tuchkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataeva, O.M., Serebryakov, V.A. & Tuchkova, N.P. Mathematical Physics Branches: Identifying Mixed Type Equations. Lobachevskii J Math 40, 876–886 (2019). https://doi.org/10.1134/S1995080219070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219070047

Keywords and phrases

Navigation