Skip to main content
Log in

Approximations of Evolutionary Inequality with Lipschitz-continuous Functional and Minimally Regular Input Data

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The convergence and accuracy of approximations of evolutionary inequality with a linear bounded operator and a convex and Lipschitz-continuous functional are investigated. Four types of approximations are considered: the regularization method, the Galerkin semi-discrete scheme, the Rothe scheme and the fully discrete scheme. Approximations are thoroughly studied under sufficiently weak assumptions about the smoothness of the input data. As an example of applying general theoretical results, we study the finite element approximation of second order parabolic variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  2. A. Friedman, Variational Principles and Free Boundary Value Problems (Wiley-Interscience, New York, 1983).

    Google Scholar 

  3. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to FreeBoundary Problems (Wiley, Chichester, 1984).

    MATH  Google Scholar 

  4. P Panagiotopoulos, Inequality Problems in Mechanics and Applications (Birkhauser, Boston, Basel, 1985).

    Book  MATH  Google Scholar 

  5. J.-L. Lions, Quelques méthodes de resolution des problèmes aux limites non-linéaires, Dunod (Gauthier-Villars, Paris, 1969).

    MATH  Google Scholar 

  6. H. Brezis, “Problemes Unilateraux,” J. Math. Pures Appl. 57, 1–168 (1972).

    MathSciNet  MATH  Google Scholar 

  7. H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions duns les Espaces de Hilbert (North-Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  8. V Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces (Leyden, 1976).

    Book  MATH  Google Scholar 

  9. T. Roubicek, Nonlinear Partial Differential Equations with Applications (Birkhauser, Boston, Basel, 2005).

    MATH  Google Scholar 

  10. A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control (North-Holland, Amsterdam, 1971).

    Google Scholar 

  11. J. H. Bramble, J. E. Pasciak, and O. Steinbach, “On the stability of the L 2 projection in H 1(Ω),” Math. Comput. 71, 147–156 (2002).

    Article  Google Scholar 

  12. R. E. Bank and H. Yserentant, “On the H 1-stability of the L 2-projection onto finite element spaces,” Numer. Math. 126, 361–381 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Chrysafinos and L. S. Hou, “Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions,” SIAM. J. Numer. Anal. 40, 282–306 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Savare, “Weak solutions and maximal regularity for abstract evolution inequalities,” Adv. Math. Sci. Appl. 6, 377–418 (1996).

    MathSciNet  MATH  Google Scholar 

  15. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972).

    Book  MATH  Google Scholar 

  16. L. C. Evans, Partial Differential Equations (AMS, Providence, RI, 1998).

    MATH  Google Scholar 

  17. J. Bergh and J. Lofstrom, Interpolation Spaces (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  18. P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation (Springer, Berlin, 1967).

    Book  MATH  Google Scholar 

  19. H. Gajewskii, K. Groger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974).

    MATH  Google Scholar 

  20. J.-P Aubin and I. Ekeland, Applied Nonlinear Analysis (Wiley, New York, 1984).

    MATH  Google Scholar 

  21. C. Baiocchi and G. Savare, “Singular perturbation and interpolation,” Math. Models Methods Appl. Sci. 4 557–570 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Z. Dautov and A. I. Mikheeva, “Exact penalty operators and regularization of parabolic variational inequalities with an obstacle inside a domain,” Differ. Equat. 1, 77–84 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Z. Dautov and A. I. Mikheeva, “Accuracy of discrete schemes for a class of abstract evolution inequalities,” Differ. Equat. 7, 824–834 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Z. Dautov or A. V. Lapin.

Additional information

Submitted by A. M. Elizarov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dautov, R.Z., Lapin, A.V. Approximations of Evolutionary Inequality with Lipschitz-continuous Functional and Minimally Regular Input Data. Lobachevskii J Math 40, 425–438 (2019). https://doi.org/10.1134/S199508021904005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508021904005X

Keywords and phrases

Navigation