Skip to main content
Log in

Analysis of Dynamic Behavior of Beams with Variable Cross-section

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A formulation of a boundary value problem to find natural frequencies of an inhomogeneous beam in the framework of the Euler–Bernoulli hypotheses are represented. Questions related to various classical variational formulations for a spectral problem arising in the beam theory are discussed. Particularities of the application of the Hamiltonian principles to boundary-value problems are considered. The method of integro-differential relations, which is an alternative to the classical variational approaches is discussed. Various bilateral energy quality estimates for approximate solutions that follow from the method of integro-differential relations are proposed. In the final part of the paper advantages of the variational technique in problems of free vibrations of inhomogeneous beams are discussed based on a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. de Rosa and N. M. Auciello, “Free vibrations of tapered beams with flexible ends,” Comput. Struct. 60, 197–202 (1996).

    Article  MATH  Google Scholar 

  2. E. T. Cranch and A. Adler, “Bending vibrations of variable section beams,” Am.Soc.Mech. Eng. 23, 103–108 (1956).

    MATH  Google Scholar 

  3. D. I. Caruntu, “On nonlinear vibration of nonuniform beam with rectangular cross-section and parabolic thickness variation,” Solid Mech. Appl. 73, 109–118 (2000).

    Google Scholar 

  4. T. D. Chaudhari and S. K. Maiti, “Modelling of transverse vibration of beam of linearly variable depth with edge crack,” Eng. Fract. Mech. 63, 425–445 (1999).

    Article  Google Scholar 

  5. S. Abrate, “Vibration of non-uniform rods and beams,” J. Sound Vibr. 185, 703–716 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. M. Auciello, “On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends,” Int. J. Mech. Sci. 43, 193–208 (2001).

    Article  MATH  Google Scholar 

  7. I. Elishakoff, Eigenvalues of Inhomogeneous Structures: Unusual Closed-form Solutions (CRC, Boca Raton, FL, 2005).

    MATH  Google Scholar 

  8. J. C. Hsu, H. Y. Lai, and C. K. Chen, “Free vibration of non-uniform Euler–Bernoulli beams with general elastically end constraints using Adomian modified decomposition method,” J. Sound Vibr. 318, 965–981 (2008).

    Article  Google Scholar 

  9. C. Franciosi and M. Mecca, “Some finite elements for the static analysis of beams with varying cross section,” Comput. Struct. 69, 191–196 (1998).

    Article  MATH  Google Scholar 

  10. S. K. Jang and C. W. Bert, “Free vibration of stepped beams: Exact and numerical solutions,” J. Sound Vibr. 130, 342–346 (1989).

    Article  MATH  Google Scholar 

  11. S. Liu, Y. Zhang, Z. Du, et al., “Prediction of the influence of temperature field on the critical speeds of a rod-fastened rotor,” Gas Turbine Technol. 2, 20–23 (2011).

    Google Scholar 

  12. M. Simsek and S. Cansiz, “Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load,” Compos. Struct. 94, 2861–2878 (2012).

    Article  Google Scholar 

  13. D. J. Gorman, Free Vibration Analysis of Beams and Shafts (Wiley, New York, 1975).

    Google Scholar 

  14. S. Rao Ramalingerswara and N. Ganesan, “Dynamic response of tapered composite beams using higher order shear deformation theory,” J. Sound Vibr. 187, 737–756 (1995).

    Article  Google Scholar 

  15. F. F. Calim, “Free and forced vibrations of non-uniform composite beams,” Comput. Struct. 88, 413–423 (2009).

    Article  Google Scholar 

  16. M. B. Pakar, “Accurate analytical solution for nonlinear free vibration of beams,” Struct. Eng. Mech. 43, 337–347 (2012).

    Article  Google Scholar 

  17. J. D. Pryce, “Atest package for Sturm–Liouville solvers,” ACM Trans. Math. Software 25, 21–57 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. D. Firouz-Abadi, H. Haddadpour, and A. B. Novinzadeh, “An asymptotic solution to transverse free vibrations of variable-section beams,” J. Sound Vibr. 304, 530–540 (2007).

    Article  Google Scholar 

  19. G. Y. Wang, Vibration of Building and Structures (Beijing Technology Science, Beijing, 1978), pp. 168–178.

    Google Scholar 

  20. Y. A. Kang and X. F. Li, “Bending of functionally graded cantilever beam with power-law nonlinearity subjected to an end force,” Int. J. Non-Lin. Mech. 44, 696–703 (2009).

    Article  Google Scholar 

  21. D. H. Heidebrecht, “Vibration of non-uniform simply supported beams,” J. Eng. Mech. Div., 1–15 (1967).

    Google Scholar 

  22. R. M. Branch, “On the extremal fundamental frequencies of vibrating beams,” J. Sound Vibr., No. 4, 667–674 (1968).

    Google Scholar 

  23. A. Gupta, “Vibration of tapered beams,” J. Struct. Eng. 111, 19–36 (1985).

    Article  Google Scholar 

  24. S. Naguleswaran, “Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth,” J. Sound Vibr. 153, 509–522 (1992).

    Article  MATH  Google Scholar 

  25. D. Zhou and Y. K. Cheung, “Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions,” J. Appl. Mech. 68, 596–602 (2001).

    Article  MATH  Google Scholar 

  26. M. C. Ece, M. Aydogdu, and V. Taskin, “Vibration of a variable cross-section beam,” Mech. Res. Commun. 34, 78–84 (2007).

    Article  MATH  Google Scholar 

  27. M. Eisenberger, “Exact longitudinal vibration frequencies of a variable cross-section rod,” Appl. Acoust. 34, 123–130 (1991).

    Article  Google Scholar 

  28. K. F. Graf, Wave Motion in Elastic Solids (Ohio State Univ. Press, Columbus, OH, 2005).

    Google Scholar 

  29. H. D. Conway and J. F. Dubil, “Vibration frequencies of truncated wedge and cone beam,” J. Appl. Mech. 32, 932–935 (1965).

    Article  Google Scholar 

  30. J. J. Mabie and C. B. Rogers, “Transverse vibrations of double-tapered cantilever beams,” J. Acoust. Soc. Am. 51, 1771–1772 (1972).

    Article  Google Scholar 

  31. P. B. Bayley, W. N. Everitt, and A. Zettl, “Computing eigenvalues of singular Sturm–Liouville problems,” Results Math. 20, 391–423 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Carrera, G. Giunta, P. Nali, and M. Petrolo, “On vibrations of nonhomogeneous beams,” Comput. Struct. 88, 283–293 (2010).

    Article  Google Scholar 

  33. B. V. Gusev and V. V. Saurin, “On nonhomogeneous beam vibrations,” Inzh.vestn.Dona, №3 (46), 50 (2017).

    Google Scholar 

  34. G. V. Kostin and V. V. Saurin, Integrodifferential Relations in Linear Elasticity (De Gruyter, Berlin, 2012).

    Book  MATH  Google Scholar 

  35. G. V. Kostin and V. V. Saurin, Dynamics of Solid Structures. Method Using Integrodifferential Relations (De Gruyter, Berlin, 2017).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Saurin.

Additional information

Submitted by A. M. Elizarov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurin, V.V. Analysis of Dynamic Behavior of Beams with Variable Cross-section. Lobachevskii J Math 40, 364–374 (2019). https://doi.org/10.1134/S1995080219030168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219030168

Keywords and phrases

Navigation