Skip to main content
Log in

Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sh. Abdullin, V. S. Zheltukhin, and N. F. Kashapov, Radio-Frequency Plasma-Jet Processing of Materials at Reduced Pressures: Theory and Practice of Applications (Izd. Kazan. Univ., Kazan, 2000) [in Russian].

    Google Scholar 

  2. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, and V. Yu. Chebakova, “Computation of the minimum eigenvalue for a nonlinear Sturm–Liouville problem,” Lobachevskii J.Math. 35, 416–426 (2014).

    Article  MathSciNet  Google Scholar 

  3. V. S. Zheltukhin, P. S. Solov’ev, and V. Yu. Chebakova, “Boundary conditions for electron balance equation in the stationary high-frequency induction discharges,” Res. J. Appl. Sci. 10, 658–662 (2015).

    Google Scholar 

  4. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, and V. Yu. Chebakova, “Existence of solutions for electron balance problem in the stationary high-frequency induction discharges,” IOP Conf. Ser.: Mater. Sci. Eng. 158, 012103–1–6 (2016).

    Article  Google Scholar 

  5. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, V. Yu. Chebakova, and A. M. Sidorov, “Third type boundary conditions for steady state ambipolar diffusion equation,” IOP Conf. Ser.: Mater. Sci. Eng. 158, 012102–1–4 (2016).

    Article  Google Scholar 

  6. Yu. P. Zhigalko and S. I. Solov’ev, “Natural oscillations of a beam with a harmonic oscillator,” Russ. Math. 45 (10), 33–35 (2001).

    MathSciNet  MATH  Google Scholar 

  7. S. I. Solov’ev, “Eigenvibrations of a beam with elastically attached load,” Lobachevskii J.Math. 37, 597–609 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. I. Solov’ev, “Eigenvibrations of a bar with elastically attached load,” Differ.Equations 53, 409–423 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. I. Solov’ev, “Eigenvibrations of a plate with elastically attached load,” Preprint SFB393/03-06 (Tech. Univ. Chemnitz, 2003).

    Google Scholar 

  10. S. I. Solov’ev, “Vibrations of plates with masses,” Preprint SFB393/03-18 (Tech. Univ. Chemnitz, 2003).

    Google Scholar 

  11. S. I. Solov’ev, Nonlinear Eigenvalue Problems. Approximate Methods (Lambert Acad., Saarbrücken, 2011) [in Russian].

    Google Scholar 

  12. A. V. Goolin and S. V. Kartyshov, “Numerical study of stability and nonlinear eigenvalue problems,” Surv. Math. Ind. 3, 29–48 (1993).

    MathSciNet  MATH  Google Scholar 

  13. T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACMTrans.Math. Software 39 (2), 7 (2013).

    MathSciNet  MATH  Google Scholar 

  14. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations (Am.Math. Society, Providence, 2001).

    MATH  Google Scholar 

  15. Th. Apel, A.-M. Sändig, and S. I. Solov’ev, “Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite elementmethod on gradedmeshes,” Math.Model. Numer. Anal. 36, 1043–1070 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. I. Solov’ev, “Fast methods for solvingmesh schemes of the finite elementmethod of second order accuracy for the Poisson equation in a rectangle” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 71–74 (1985).

    Google Scholar 

  17. S. I. Solov’ev, “A fast direct method for solving schemes of the finite element method with Hermitian bicubic elements,” Izv. Vyssh. Uchebn. Zaved.,Mat., No. 8, 87–89 (1990).

    MATH  Google Scholar 

  18. A. D. Lyashko and S. I. Solov’ev, “Fourier method of solution of FE systems with Hermite elements for Poisson equation,” Sov. J. Numer. Anal.Math. Model. 6, 121–129 (1991).

    MathSciNet  MATH  Google Scholar 

  19. S. I. Solov’ev, “Fast direct methods of solving finite-element grid schemes with bicubic elements for the Poisson equation,” J.Math. Sci. 71, 2799–2804 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. I. Solov’ev, “A fast directmethod of solving Hermitian fourth-order finite-element schemes for the Poisson equation,” J.Math. Sci. 74, 1371–1376 (1995).

    Article  MathSciNet  Google Scholar 

  21. E. M. Karchevskii and S. I. Solov’ev, “Investigation of a spectral problem for the Helmholtz operator on the plane,” Differ. Equations 36 (4), 631–634 (2000).

    Article  MathSciNet  Google Scholar 

  22. A. A. Samsonov and S. I. Solov’ev, “Eigenvibrations of a beam with load,” Lobachevskii J. Math. 38, 849–855 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. B. Badriev, G. Z. Garipova, M. V. Makarov, and V. N. Paymushin, “Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler,” Res. J. Appl. Sci. 10, 428–435 (2015).

    Google Scholar 

  24. A. V. Gulin and A. V. Kregzhde, “On the applicability of the bisection method to solve nonlinear difference Eigenvalue problems,” Preprint No. 8 (Inst. Appl.Math., USSR Acad. Sci., Moscow, 1982).

    Google Scholar 

  25. A. V. Gulin and S. A. Yakovleva, “On a numerical solution of a nonlinear eigenvalue problem,” in Computational Processes and Systems (Nauka, Moscow, 1988), Vol. 6, pp. 90–97 [in Russian].

    MathSciNet  MATH  Google Scholar 

  26. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly,” Russ. J. Numer. Anal.Math. Model. 9, 417–427 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Ruhe, “Algorithms for the nonlinear eigenvalue problem,” SIAM J. Numer. Anal. 10, 674–689 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Rev. 43, 235–286 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Mehrmann and H. Voss, “Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods,” GAMM–Mit. 27, 1029–1051 (2004).

    MathSciNet  MATH  Google Scholar 

  30. S. I. Solov’ev, “Preconditioned iterativemethods for a class of nonlinear eigenvalue problems,” Linear Algebra Appl. 415, 210–229 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Kressner, “A block Newton method for nonlinear eigenvalue problems,” Numer. Math. 114 355–372 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Huang, Z. Bai, and Y. Su, “Nonlinear rank-one modification of the symetric eigenvalue problem,” J. Comput.Math. 28, 218–234 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Schwetlick and K. Schreiber, “Nonlinear Rayleigh functionals,” Linear Algebra Appl. 436, 3991–4016 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  34. W.-J. Beyn, “An integral method for solving nonlinear eigenvalue problems,” Linear Algebra Appl. 436, 3839–3863 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Leblanc and A. Lavie, “Solving acoustic nonlinear eigenvalue problems with a contour integral method,” Eng. Anal. Bound. Elem. 37, 162–166 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Qian, L. Wang, and Y. Song, “A successive quadratic approximations method for nonlinear eigenvalue problems,” J.Comput. Appl. Math. 290, 268–277 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. V. Gulin and A. V. Kregzhde, “Difference schemes for some nonlinear spectral problems,” Preprint no. 153 (Inst. Appl.Math., USSR Acad. Sci., Moscow, 1981).

    Google Scholar 

  38. A. V. Kregzhde, “On difference schemes for the nonlinear Sturm–Liouville problem,” Differ. Uravn. 17, 1280–1284 (1981).

    MathSciNet  Google Scholar 

  39. S. I. Solov’ev, “The finite element method for symmetric nonlinear eigenvalue problems,” Comput. Math. Math. Phys. 37, 1269–1276 (1997).

    MathSciNet  Google Scholar 

  40. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “Convergence of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with parameter entering nonlinearly,” Differ. Equations 27, 799–806 (1991).

    MATH  Google Scholar 

  41. S. I. Solov’ev, “The error of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with a non-linearly occurring parameter,” Comput.Math. Math. Phys. 32, 579–593 (1992).

    MathSciNet  MATH  Google Scholar 

  42. S. I. Solov’ev, “Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter,” Differ. Equations 50, 947–954 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  43. S. I. Solov’ev, “Superconvergence of finite element approximations of eigenfunctions,” Differ. Equations 30, 1138–1146 (1994).

    MathSciNet  MATH  Google Scholar 

  44. S. I. Solov’ev, “Superconvergence of finite element approximations to eigenspaces,” Differ. Equations 38, 752–753 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. I. Solov’ev, “Approximation of differential eigenvalue problems,” Differ. Equations 49, 908–916 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. I. Solov’ev, “Finite element approximationwith numerical integration for differential eigenvalue problems,” Appl. Numer. Math. 93, 206–214 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. I. Solov’ev, “Approximation of nonlinear spectral problems in a Hilbert space” Differ. Equations 51, 934–947 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. I. Solov’ev, “Approximation of variational eigenvalue problems,” Differ. Equations 46, 1030–1041 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. I. Solov’ev, “Approximation of positive semidefinite spectral problems,” Differ. Equations 47, 1188–1196 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. I. Solov’ev, “Approximation of sign-indefinite spectral problems,” Differ. Equations 48, 1028–1041 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  51. S. I. Solov’ev, “Approximation of operator eigenvalue problems in a Hilbert space,” IOP Conf. Ser.: Mater. Sci. Eng. 158, 012087–1–6 (2016).

    Article  Google Scholar 

  52. S. I. Solov’ev, “Quadrature finite elementmethod for elliptic eigenvalue problems,” Lobachevskii J.Math. 38, 856–863 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  53. I. B. Badriev and L. A. Nechaeva, “Mathematical simulation of steady filtration with multivalued law,” PNRPUMech. Bull., No. 3, 37–65 (2013).

    Google Scholar 

  54. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, “Numerical investigation of physically nonlinear problem of sandwich plate bending,” Proc. Eng. 150, 1050–1055 (2016).

    Article  Google Scholar 

  55. I. B. Badriev, G. Z. Garipova, M. V. Makarov, V. N. Paimushin, and R. F. Khabibullin, “Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core,” Lobachevskii J.Math. 36, 474–481 (2015).

    Article  MathSciNet  Google Scholar 

  56. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, “Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core,” Russ. Math. 59 (10), 57–60 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  57. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, “Mathematical simulation of nonlinear problem of threepoint composite sample bending test,” Proc. Eng. 150, 1056–1062 (2016).

    Article  Google Scholar 

  58. I. B. Badriev, V. V. Banderov, V. L. Gnedenkova, N. V. Kalacheva, A. I. Korablev, and R. R. Tagirov, “On the finite dimensional approximations of some mixed variational inequalities,” Appl.Math. Sci. 9 (113–116), 5697–5705 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Solov’ev.

Additional information

Submitted by A. V. Lapin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, S.I., Solov’ev, P.S. Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem. Lobachevskii J Math 39, 949–956 (2018). https://doi.org/10.1134/S199508021807020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508021807020X

Keywords and phrases

Navigation