Skip to main content
Log in

Clarkson’s inequalities for periodic Sobolev space

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The validity of Clarkson’s inequalities for periodic functions in the Sobolev space normed without the use of pseudodifferential operators is proved. The norm of a function is defined by using integrals over a fundamental domain of the function and its generalized partial derivatives of all intermediate orders. It is preliminarily shown that Clarkson’s inequalities hold for periodic functions integrable to some power p over a cube of unit measure with identified opposite faces. The work is motivated by the necessity of developing foundations for the functional-analytic approach to evaluating approximation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Sobolev, Introduction to the Theory of Cubature Formulas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. J. A. Clarkson, “Uniformly convex spaces,” Trans. Am. Math. Soc. 40, 396–414 (1936). doi 10.2307/1989630

    Article  MathSciNet  MATH  Google Scholar 

  3. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  4. O. Hanner, “On the uniformconvexity of Lp and lp,” Ark. Mat. 3, 239–244 (1956). doi 10.1007/BF02589410

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Enflo, “Banach spaces which can be given an equivalent uniformly convex norm,” Isr. J. Math. 13, 281–288 (1972). doi 10.1007/BF02762802

    Article  MathSciNet  Google Scholar 

  6. R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces (Longman, Harlow, 1993).

    MATH  Google Scholar 

  7. V. R. Portnov, “Sobolev projection operators for seminorms with infinite-dimensional kernels,” Tr. MIAN SSSR 140, 252–263 (1976).

    MathSciNet  MATH  Google Scholar 

  8. V. R. Portnov, “On some integral inequations,” in Embedding Theorems and Their Applications (Nauka, Moscow, 1970), pp. 195–203 [in Russian].

    Google Scholar 

  9. V. R. Portnov, “On a certain projection operator of Sobolev type,” Dokl. AN SSSR 189, 258–260 (1969).

    MathSciNet  MATH  Google Scholar 

  10. M. S. Agranovich, Sobolev Spaces, their Generalizations and Elliptic Problems in Domains with Smooth and Lipschitz Boundary (MTsNMO, Msocow, 2013) [in Russian].

    Google Scholar 

  11. V. G. Maz’ya, Sobolev Spaces (Leningr. Gos. Univ., Leningrad, 1985) [in Russian].

    MATH  Google Scholar 

  12. Ts. B. Shoinzhurov, “The theory of cubature formulas in function spaces with the norm depending on the function and its derivatives,” Doctoral (Phys.Math.) Dissertation (Ulan-Ude, 1977).

    Google Scholar 

  13. Ts. B. Shoinzhurov, Estimation of Norm of Cubature Formula Error Functional in Various Functional Spaces (Buryat. Nauch. Tsentr SO RAN, Ulan-Ude, 2005) [in Russian].

    Google Scholar 

  14. Ts. B. Shoinzhurov, Cubature Formulae in Sobolev Space W p m (Vost. Sib. Gos. Tekh. Univ., Ulan-Ude, 2002) [in Russian].

    Google Scholar 

  15. I. V. Korytov, “Function representing error functional of a cubature formula in Sobolev space,” Izv. Tomsk. Politekh. Univ. 323 (2), 21–25 (2013).

    Google Scholar 

  16. I. V. Korytov, “The extreme function of a linear functional at the weighted Sobolev space,” Vestn. Tom. Univ., Mat. Mekh., No. 2, 5–15 (2011).

    Google Scholar 

  17. I. V. Korytov, “Representation of error functional of cubature formula at weighted Sobolev space,” Vychisl. Tekhnol. 11, 59–66 (2006).

    MATH  Google Scholar 

  18. S. L. Sobolev and V. L. Vaskevich, Cubature Formulas (Inst. Matem., Novosibirsk, 1996) [in Russian].

    MATH  Google Scholar 

  19. V. L. Vaskevich, “Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures,” Sib. Math. J. 53, 996–1010 (2012). doi 10.1134/S0037446612060043

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Mbarki, A. Ouahab, and I. E. Hadi, “Convexity and fixed point properties in spaces of Bochner integrals nuclear-valued functions,” Appl.Math. Sci. 8 (84), 4179–4186 (2014).

    Google Scholar 

  21. H. Mizuguchi and K. S. Saito, “A note on Clarkson’s inequality in the real case,” J. Math. Inequalities 4, 29–132 (2010). doi 10.7153/jmi-04-13

    MathSciNet  MATH  Google Scholar 

  22. T. Formisano and E. Kissin, “Clarkson–McCarthy inequalities for lp-spaces of operators in Schatten ideals,” Integr. Equations Oper. Theory 79, 151–173 (2014). doi 10.1007/s00020-014-2145-x

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Korytov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korytov, I.V. Clarkson’s inequalities for periodic Sobolev space. Lobachevskii J Math 38, 1146–1155 (2017). https://doi.org/10.1134/S1995080217060178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217060178

Keywords and phrases

Navigation