Skip to main content
Log in

Eigenvibrations of a beam with elastically attached load

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The nonlinear eigenvalue problem describing eigenvibrations of a beam with elastically attached load is investigated. The existence of an increasing sequence of positive simple eigenvalues with limit point at infinity is established. To the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. The problem is approximated by the finite element method with Hermite finite elements of arbitrary order. The convergence and accuracy of approximate eigenvalues and eigenfunctions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Zhigalko and S. I. Solov’ev, “Natural oscillations of a beam with a harmonic oscillator,” Russ. Math. 45 (10), 33–35 (2001).

    MathSciNet  MATH  Google Scholar 

  2. S. I. Solov’ev, Eigenvibrations of a Plate with Elastically Attached Load, Preprint SFB393/03-06 (Technische Universität Chemnitz, 2003).

    Google Scholar 

  3. S. I. Solov’ev, Vibrations of Plates with Masses, Preprint SFB393/03-18 (Technische Universität Chemnitz, 2003).

    Google Scholar 

  4. S. I. Solov’ev, Nonlinear Eigenvalue Problems: Approximate Methods (Lambert Acad. Publ., Saarbrücken, 2011) [in Russian].

    Google Scholar 

  5. A. V. Gulin and S. V. Kartyshov, “Numerical study of stability and nonlinear eigenvalue problems,” Surv. Math. Ind. 3, 29–48 (1993).

    MathSciNet  MATH  Google Scholar 

  6. T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACMTrans.Math. Software. 39 (2), Article number 7 (2013).

    MathSciNet  MATH  Google Scholar 

  7. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations (AmericanMathematical Society, Providence, 2001).

    MATH  Google Scholar 

  8. Th. Apel, A.-M. Sändig, and S. I. Solov’ev, “Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes,” Math. Model. Numer. Anal. 36 (6), 1043–1070 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. D. Lyashko and S. I. Solov’ev, “Fourier method of solution of FE systems with Hermite elements for Poisson equation,” Sov. J. Numer. Anal.Math. Modelling. 6 (2), 121–129 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. I. Solov’ev, “Fast direct methods of solving finite-element grid schemes with bicubic elements for the Poisson equation,” J. Math. Sciences. 71 (6), 2799–2804 (1994).

    Article  MATH  Google Scholar 

  11. S. I. Solov’ev, “A fast directmethod of solving Hermitian fourth-order finite-element schemes for the Poisson equation,” J. Math. Sciences. 74 (6), 1371–1376 (1995).

    Article  Google Scholar 

  12. E. M. Karchevskii and S. I. Solov’ev, “Investigation of a spectral problem for the Helmholtz operator on the plane,” Differ. Equations 36 (4), 631–634 (2000).

    Article  MathSciNet  Google Scholar 

  13. A. V. Gulin and A. V. Kregzhde, On the Applicability of the Bisection Method to Solve Nonlinear Difference Eigenvalue Problems, Preprint no. 8 (Inst. Appl. Math., USSR Science Academy, Moscow, 1982).

    Google Scholar 

  14. A. V. Gulin and S. A. Yakovleva, “On a numerical solution of a nonlinear eigenvalue problem,” in Computational Processes and Systems, (Nauka, Moscow, 1988), Vol. 6, pp. 90–97 [in Russian].

    Google Scholar 

  15. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly,” Russ. J. Numer. Anal. Math. Modelling. 9 (5), 417–427 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Ruhe, “Algorithms for the nonlinear eigenvalue problem,” SIAM J. Numer. Anal. 10, 674–689 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Rev. 43, 235–286 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Mehrmann and H. Voss, “Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods,” GAMM–Mit. 27, 1029–1051 (2004).

    MathSciNet  MATH  Google Scholar 

  19. S. I. Solov’ev, “Preconditioned iterativemethods for a class of nonlinear eigenvalue problems,” Linear Algebra Appl. 415 (1), 210–229 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Kressner, “A block Newton method for nonlinear eigenvalue problems,” Numer. Math. 114 (2), 355–372 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Huang, Z. Bai, and Y. Su, “Nonlinear rank-one modification of the symetric eigenvalue problem,” J. Comput.Math. 28 (2), 218–234 (2010).

    MathSciNet  MATH  Google Scholar 

  22. H. Schwetlick and K. Schreiber, “Nonlinear Rayleigh functionals,” Linear Algebra Appl. 436 (10), 3991–4016 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. W.-J. Beyn, “An integral method for solving nonlinear eigenvalue problems,” Linear Algebra Appl. 436 (10), 3839–3863 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Leblanc and A. Lavie, “Solving acoustic nonlinear eigenvalue problems with a contour integral method,” Eng. Anal. Bound. Elem. 37 (1), 162–166 (2013).

    Article  MathSciNet  Google Scholar 

  25. X. Qian, L. Wang, and Y. Song, “A successive quadratic approximations method for nonlinear eigenvalue problems,” J.Comput. Appl. Math. 290, 268–277 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. V. Gulin and A. V. Kregzhde, Difference Schemes for Some Nonlinear Spectral Problems, Preprint no. 153 (Inst. Appl.Math., USSR Science Academy, Moscow, 1981).

    Google Scholar 

  27. A. V. Kregzhde, “On difference schemes for the nonlinear Sturm–Liouville problem,” Differ. Uravn. 17 (7), 1280–1284 (1981).

    MathSciNet  Google Scholar 

  28. S. I. Solov’ev, “The error of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with a non-linearly occurring parameter,” Comput.Math. Math. Phys. 32 (5), 579–593 (1992).

    MathSciNet  MATH  Google Scholar 

  29. S. I. Solov’ev, “The finite element method for symmetric nonlinear eigenvalue problems,” Comput. Math. Math. Phys. 37 (11), 1269–1276 (1997).

    MathSciNet  Google Scholar 

  30. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “Convergence of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with parameter entering nonlinearly,” Differ. Equations. 27 (7), 799–806 (1991).

    MathSciNet  MATH  Google Scholar 

  31. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, and V. Yu. Chebakova, “Computation of the minimum eigenvalue for a nonlinear Sturm–Liouville problem,” Lobachevskii J.Math. 35 (4), 416–426 (2014).

    Article  MathSciNet  Google Scholar 

  32. S. I. Solov’ev, “Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter,” Differ. Equations. 50 (7), 947–954 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. I. Solov’ev, “Approximation of nonlinear spectral problems in a Hilbert space,” Differ. Equations. 51 (7), 934–947 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. O. O. Karma, “Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I,” Numer. Funct. Anal. Optimiz. 17, 365–387 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  35. O. O. Karma, “Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. Convergence rate,” Numer. Funct. Anal. Optimiz. 17, 389–408 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Babushka and A. K. Aziz, “Survey lectures on the mathematical foundations of the finite element method,” in TheMathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic Press, New York, 1972), pp. 3–359.

    Chapter  Google Scholar 

  37. G. M. Vainikko, “Asymptotic evaluations of the error of projection methods for the eigenvalue problem,” USSRComput. Math.Math. Phys. 4 (3), 9–36 (1964).

    Article  MATH  Google Scholar 

  38. G. M. Vainikko, “Evaluation of the error of the Bubnov-Galerkin method in an eigenvalue problem,” USSR Comput.Math. Math. Phys. 5 (4), 1–31 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. M. Vainikko, “On the speed of convergence of approximate methods in the eigenvalue problem,” USSR Comput.Math. Math. Phys. 7 (5), 18–32 (1967).

    Article  MATH  Google Scholar 

  40. S. I. Solov’ev, “Superconvergence of finite element approximations of eigenfunctions,” Differ. Equations. 30 (7), 1138–1146 (1994).

    MathSciNet  MATH  Google Scholar 

  41. S. I. Solov’ev, “Superconvergence of finite element approximations to eigenspaces,” Differ. Equations. 38 (5), 752–753 (2002).

    Article  MATH  Google Scholar 

  42. S. I. Solov’ev, “Approximation of variational eigenvalue problems,” Differ. Equations. 46 (7), 1030–1041 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  43. S. I. Solov’ev, “Approximation of positive semidefinite spectral problems,” Differ. Equations. 47 (8), 1188–1196 (2011).

    Article  MATH  Google Scholar 

  44. S. I. Solov’ev, “Approximation of sign-indefinite spectral problems,” Differ. Equations. 48 (7), 1028–1041 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. I. Solov’ev, “Approximation of differential eigenvalue problems,” Differ. Equations. 49 (7), 908–916 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. I. Solov’ev, “Finite element approximationwith numerical integration for differential eigenvalue problems,” Appl. Numer. Math. 93, 206–214 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  47. V. P.Mikhaylov, Partial Differential Equations (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  48. I. Babushka and J. E. Osborn, “Eigenvalue problems,” in Handbook of Numerical Analysis (North- Holland, Amsterdam, 1991), Vol. 2, pp. 642–787 (1991).

    Google Scholar 

  49. V. S. Zheltukhin, P. S. Solov’ev, and V. Yu. Chebakova, “Boundary conditions for electron balance equation in the stationary high-frequency induction discharges,” Research Journal of AppliedSciences 10 (10), 658–662 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Solov’ev.

Additional information

Submitted by A. V. Lapin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, S.I. Eigenvibrations of a beam with elastically attached load. Lobachevskii J Math 37, 597–609 (2016). https://doi.org/10.1134/S1995080216050115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080216050115

Keywords and phrases

Navigation