Skip to main content
Log in

Poly(p-Xylylene) and Poly(chloro-p-Xylylene) Protective Coatings Prepared by Deposition in a Nitrogen Flow

  • NATURAL SCIENTIFIC METHODS IN STUDYING CULTURAL HERITAGE SITES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Thin-film protective coatings based on poly(p-xylylene) (PPX) and poly(chloro-p-xylylene) (PCPX) have been synthesized by vapor deposition polymerization (VDP) in a vacuum and deposition in a nitrogen flow. Comparison of characteristics of the PPX coatings by atomic force microscopy, infrared spectroscopy, and thermogravimetric analysis has shown that the films deposited in a nitrogen flow, unlike the films prepared by VPD in a vacuum, contain a large amount of low-molecular-weight fractions that worsen the protective characteristics of the films. In addition, the growth rate of these films is too low for practical applications. Analysis of the PCPX-based coatings prepared by these methods has shown a high similarity in composition and structure at comparable growth rates of the coatings. Owing to the high transparency and hydrophobicity of PCPX coatings prepared by deposition in a nitrogen flow, they can be used for the conservation of historical artifacts and written monuments on paper media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. G. Goryaeva and S. A. Dobrusina, in Protection of Documents from Biological Damage, Proceedings of the All-Russian Training Seminar (RNB, St. Petersburg, 2005), p. 133.

  2. W. Beach, C. Lee, D. Bassett, et al., Encyclopedia of Polymer Science and Engineering, 2nd ed. (Wiley, New York, 1989), Vol. 17, p. 990.

    Google Scholar 

  3. K. I. Pokhodnya and M. Bonner, Chem. Mater. 16, 5114 (2004). https://doi.org/10.1021/cm048872d

    Article  CAS  Google Scholar 

  4. E. Schmidt, J. Mcintosh, and M. Bak, Med. Biol. Eng. Comput. 26, 96 (1988).

    Article  CAS  Google Scholar 

  5. W. Mokwa, Meas. Sci. Technol. 18, R47 (2007).

    Article  CAS  Google Scholar 

  6. K. Kokko, H. Harjunpaa, P. Heino, and M. Kellomaki, Microelectron. Reliab. 49, 92 (2009). https://doi.org/10.1016/j.microrel.2008.10.016

    Article  Google Scholar 

  7. Y. Jeong, B. Ratier, A. Moliton, and L. Guyard, Synth. Met. 127, 189 (2002). https://doi.org/10.1016/S0379-6779(01)00621-X

    Article  CAS  Google Scholar 

  8. H.-W. Huebers, J. Schubert, A. Krabbe, et al., Infrared Phys. Technol. 42, 41 (2001). https://doi.org/10.1016/S1350-4495(00)00057-8

    Article  Google Scholar 

  9. B. Ratier, Y. S. Jeong, A. Moliton, and P. Audebert, Opt. Mater. 12, 229 (1999). https://doi.org/10.1016/S0925-3467(99)00035-X

    Article  CAS  Google Scholar 

  10. X. Yang, C. Grosjean, and Y. Tai, Electr. Eng. 136, 93 (1998).

    Google Scholar 

  11. P. Chen, D. Rodger, E. Meng, et al., in Microtechnologies in Medicine and Biology, Proceedings of the 2006 International Conference, IEEE, 2006, p. 256. https://doi.org/10.5573/JSTS.2013.13.4.355

  12. T. Pornsin-Sirirak, Y. Tai, H. Nassef, and C. Ho, in Micro Electro Mechanical Systems MEMS 2001, Proceedings of the 14th IEEE International Conference (IEEE, 2001), p. 511. https://doi.org/10.1109/MEMSYS.2001.906556

  13. T.-N. Chen, D.-S. Wuu, C.-C. Wu, et al., Plasma Process Polym. 4, 180 (2007).

    Article  CAS  Google Scholar 

  14. J. Jakabovic, J. Kovac, M. Weis, et al., Microelectron. J. 40, 595 (2009). https://doi.org/10.1016/j.mejo.2008.06.029

    Article  CAS  Google Scholar 

  15. L. G. Levashova, M. S. Vilesova, V. B. Zhuravskii, et al., Teor. Prakt. Sokhran. Pamyatn. Kul’t. 19, 128 (1998).

    Google Scholar 

  16. W. J. Gorham, Polym. Sci. A-1 4, 3027 (1966). https://doi.org/10.1002/pol.1966.150041209

  17. A. A. Knyazeva, S. A. Ozerin, E. I. Grigor’ev, S. N. Chva-lun, S. A. Zav’yalov, and I. E. Kardash, Polymer Sci., Ser. B 47, 210 (2005).

    Google Scholar 

  18. S. Biswas, O. Shalev, K. P. Pipe, and M. Shtein, Macromolecules 48, 5550 (2015). https://doi.org/10.1021/acs.macromol.5b00505

    Article  CAS  Google Scholar 

  19. J. Erjavec, J. Sikita, P. S. Beaudoin, and B. G. Raupp, Mater. Lett. 39, 339 (1999). https://doi.org/10.1016/S0167-577X(99)00031-2

    Article  CAS  Google Scholar 

  20. D. R. Strel’tsov, A. I. Buzin, E. I. Grigor’ev, P. V. Dmitryakov, K. A. Mailyan, A. V. Pebalk, and S. N. Chvalun, Nanotechnol. Russ. 3, 494 (2008).

    Article  Google Scholar 

  21. O. P. Ivanova, E. P. Krinichnaya, P. V. Morozov, S. A. Zav’yalov, and T. S. Zhuravleva, Nanotechnol. Russ. 14, 7 (2019). https://doi.org/10.21517/1992-7223-2019-1-2-5-12

    Article  CAS  Google Scholar 

  22. T. E. Nowlin, D. F. Smith, Jr., and G. S. Cieloszyk, J. Polym. Sci.: Polym. Chem. Ed. 18, 2103 (1980). https://doi.org/10.1002/pol.1980.170180707

    Article  CAS  Google Scholar 

  23. M. Bera, A. Rivaton, C. Gandon, and J. L. Gardette, Eur. Polym. J. 36, 1753 (2000). https://doi.org/10.1016/S0014-3057(99)00258-X

    Article  CAS  Google Scholar 

  24. M. Szwarc, Polym. Eng. 16, 473 (1976). https://doi.org/10.1002/pen.760160703

    Article  CAS  Google Scholar 

  25. M. A. Spivac, Rev. Sci. Instrum. 43, 985 (1972).

    Article  Google Scholar 

  26. A. Kahouli, A. Sylvestre, L. Ortega, et al., Appl. Phys. Lett. 94, 152901 (2009). https://doi.org/10.1063/1.3114404

    Article  CAS  Google Scholar 

  27. M. J. Herman and M. W. Blair, Polym. Degrad. Stab. 171, 109024 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109024

    Article  CAS  Google Scholar 

  28. P. N. Wahjudi, J. H. Oh, S. O. Salman, et al., J. Biomed. Mater. Res. A 89, 206 (2009). https://doi.org/10.1002/jbm.a.31929

    Article  CAS  Google Scholar 

  29. S. Isoda, T. Ichida, A. Kawaguchi, and K. Katayama, Bull. Inst. Chem. Res., Kyoto Univ. 61, 222 (1983).

    CAS  Google Scholar 

  30. A. N. Ozerin, S. A. Ivanov, S. N. Chvalun, Yu. A. Zubov, Zavod. Labor. 52, 20 (1986).

    CAS  Google Scholar 

  31. S. N. Malakhov, S. I. Belousov, M. A. Shcherbina, M. Yu. Meshchankina, S. N. Chvalun, and A. D. Shepelev, Polymer Sci., Ser. A 58, 236 (2016). https://doi.org/10.7868/S2308112016020152

    Article  CAS  Google Scholar 

  32. S. N. Malakhov, S. I. Belousov, A. S. Orekhov, and S. N. Chvalun, Khim. Volokna, No. 1, 29 (2018). https://doi.org/10.1007/s10692-018-9922-2

  33. T. Trantidou, T. Prodromakis, and C. Toumazou, Appl. Surf. Sci. 261, 43 (2012). https://doi.org/10.1016/j.apsusc.2012.06.112

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-00-00427) within the framework of complex project KOMFI 18-00-00429(K) using the equipment of the Resource Centers of Kurchatov Institute National Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nesmelov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesmelov, A.A., Zavyalov, S.A., Streltsov, D.R. et al. Poly(p-Xylylene) and Poly(chloro-p-Xylylene) Protective Coatings Prepared by Deposition in a Nitrogen Flow. Nanotechnol Russia 15, 647–654 (2020). https://doi.org/10.1134/S1995078020050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020050092

Navigation