Skip to main content
Log in

Determining the Structure and Location of the ATP Synthase in the Membranes of Rat’s Heart Mitochondria Using Cryoelectron Tomography

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The structure of the ATP synthase of rat’s heart mitochondria is determined by cryoelectron tomography (cryo-ET). The experiments are carried out on fragments of mitochondrial membranes without the additional purification of samples, which allows us to study the mitochondrial enzymes in the natural phospholipid and protein environment. The use of subtomographic averaging yields the structure of the ATP synthase with a resolution of about 13 Å, as well as the structure of a stable dimer of ATP synthases with a resolution of about 15 Å. The classification of the obtained subtomograms containing ATP synthases showed that this enzyme is always located on the bends of the phospholipid bilayer, while there are two groups of ATP synthase dimers that differ in the membrane curvature in the regions of their localization. On the obtained three-dimensional structures, both extramembrane and intramembrane synthase subunits are quite clearly distinguishable, which indicates the prospects of the chosen methodological approach for studying polyenzyme systems in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. S. Yaguzhinsky, L. I. Boguslavsky, A. G. Volkov, and A. B. Rakhmaninova, Nature (London, U.K.) 259, 494 (1976). https://doi.org/10.1038/259494a0

    Article  CAS  Google Scholar 

  2. S. A. Eremeev and L. S. Yaguzhinsky, Biochemistry (Moscow) 80, 576 (2015). https://doi.org/10.1134/S0006297915050089

    Article  CAS  Google Scholar 

  3. K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, Philos. Trans. R. Soc. B 355, 473 (2000). https://doi.org/10.1098/rstb.2000.0589

    Article  CAS  Google Scholar 

  4. P. D. Boyer, Biochim. Biophys. Acta 1140, 215 (1993). https://doi.org/10.1016/0005-2728(93)90063-L

    Article  CAS  Google Scholar 

  5. B. J. Murphy, N. Klusch, J. Langer, et al., Science (Washington, DC, U. S.) 364 (6446) (2019). https://doi.org/10.1126/science.aaw9128

  6. S. Vahidi, Y. Bi, S. D. Dunn, and L. Konermann, Proc. Natl. Acad. Sci. U. S. A. 113, 2412 (2016). https://doi.org/10.1073/pnas.1520464113

    Article  CAS  Google Scholar 

  7. R. Watanabe, K. V. Tabata, R. Iino, et al., Nat. Commun. 4, 1 (2013). https://doi.org/10.1038/ncomms2631

    Article  CAS  Google Scholar 

  8. T. B. Blum, A. Hahn, T. Meier, et al., Proc. Natl. Acad. Sci. U. S. A. 116, 4250 (2019). https://doi.org/10.1073/pnas.1816556116

    Article  CAS  Google Scholar 

  9. A. W. Mühleip, F. Joos, C. Wigge, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 8442 (2016). https://doi.org/10.1073/pnas.1525430113

  10. W. Wan and J. A. G. Briggs, Methods Enzymol. 579, 329 (2016). https://doi.org/10.1016/bs.mie.2016.04.014

    Article  CAS  Google Scholar 

  11. J. W. Palmer, B. Tandler, and C. L. Hoppel, J. Biol. Chem. 252, 8731 (1977).

    CAS  Google Scholar 

  12. S. V. Nesterov, Y. A. Skorobogatova, A. A. Panteleeva, et al., Chem. Biol. Interact. 291, 40 (2018). https://doi.org/10.1016/j.cbi.2018.06.004

    Article  CAS  Google Scholar 

  13. J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, J. Struct. Biol. 116, 71 (1996). https://doi.org/10.1006/jsbi.1996.0013

    Article  CAS  Google Scholar 

  14. M. Radermacher, in Electron Tomography, Ed. by J. Frank (Springer, New York, 2006), p. 245. https://doi.org/10.1007/978-0-387-69008-7_9

  15. J. G. Galaz-Montoya, J. Flanagan, M. F. Schmid, and S. J. Ludtke, J. Struct. Biol. 190, 279 (2015). https://doi.org/10.1016/j.jsb.2015.04.016

    Article  CAS  Google Scholar 

  16. S. H. W. Scheres, J. Struct. Biol. 180, 519 (2012). https://doi.org/10.1016/j.jsb.2012.09.006

    Article  CAS  Google Scholar 

  17. D. Kimanius, B. O. Forsberg, S. H. Scheres, and E. Lindahl, eLife 5, e18722 (2016). https://doi.org/10.7554/eLife.18722

    Article  CAS  Google Scholar 

  18. A. Rohou, J. Struct. Biol. 192, 216 (2015). https://doi.org/10.1016/j.jsb.2015.08.008

    Article  Google Scholar 

  19. T. A. M. Bharat and S. H. W. Scheres, Nat. Protoc. 11, 2054 (2016). https://doi.org/10.1038/nprot.2016.124

    Article  CAS  Google Scholar 

  20. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem. 25, 1605 (2004). https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  21. C. Jiko, K. M. Davies, K. Shinzawa-Itoh, et al., eLife 4, e06119 (2015). https://doi.org/10.7554/eLife.06119

    Article  Google Scholar 

  22. D'E. Imprima, D. Floris, M. Joppe, et al., eLife 8, e42747 (2019). https://doi.org/10.7554/eLife.42747

    Article  Google Scholar 

  23. N. Buzhynskyy, P. Sens, V. Prima, et al., Biophys. J. 93, 2870 (2007). https://doi.org/10.1529/biophysj.107.109728

    Article  CAS  Google Scholar 

  24. A. Zhou, A. Rohou, D. G. Schep, et al., eLife 4, e10180 (2015). https://doi.org/10.7554/eLife.10180

    Article  Google Scholar 

  25. K. M. Davies, M. Strauss, B. Daum, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 14121 (2011). https://doi.org/10.1073/pnas.1103621108

    Article  Google Scholar 

  26. H. Guo, S. A. Bueler, and J. L. Rubinstein, Science (Washington, DC, U. S.) 358, 936 (2017). https://doi.org/10.1126/science.aao4815

    Article  CAS  Google Scholar 

  27. K. M. Davies, B. Daum, V. A. M. Gold, et al., JoVE J. Vis. Exp., No. 91, e51228 (2014). https://doi.org/10.3791/51228

  28. D. A. Patten, J. Wong, M. Khacho, et al., EMBO J. 33, 2676 (2014). https://doi.org/10.15252/embj.201488349

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Kurchatov Institute as part of the theme on “The study of the processes of generation, transmission, and distribution of energy in living organisms” and in accordance with order no. 1360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nesterov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, S.V., Chesnokov, Y.M., Kamyshinsky, R.A. et al. Determining the Structure and Location of the ATP Synthase in the Membranes of Rat’s Heart Mitochondria Using Cryoelectron Tomography. Nanotechnol Russia 15, 83–89 (2020). https://doi.org/10.1134/S1995078020010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020010139

Navigation