Skip to main content
Log in

Metal–Dielectric Core–Shell Nanoparticles

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—A method is proposed for calculating the optical resonance properties of metal–dielectric core–shell nanoparticles with an arbitrary number of layers in the shell. A formula is calculated for a particle with a single-layer shell, which confirms the well-known experimental and theoretical result. A formula is derived that relates the polarizability of a particle and its optical properties for the structure of a core with a spherical double shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. H. Rahaman and B. A. Kemp, “Analytical model of plasmonic resonance from multiple core-shell nanoparticles,” Opt. Eng. 56, 121903 (2017). https://doi.org/10.1117/1.OE.56.12.121903

    Article  Google Scholar 

  2. X. Meng, Y. Moriguchi, Y. Zong, et al., “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mater. 1, 573 (2013). https://doi.org/10.1002/adom.201300153

    Article  Google Scholar 

  3. Y. Gutiérrez, D. Ortiz, R. Alcaraz de la Osa, et al., “Modelling metal-dielectric core-shell nanoparticles with effective medium theories,” Proc. SPIE 10453, 104531G (2017). https://doi.org/10.1117/12.2272116

    Article  Google Scholar 

  4. J. Zhu, J. J. Li, and J. W. Zhao, “The effect of dielectric coating on the local electric field enhancement of Au–Ag core-shell nanoparticles,” Plasmonics 10, 1 (2015). https://doi.org/10.1007/s11468-014-9769-1

    Article  CAS  Google Scholar 

  5. P. Yu, Y. Yao, J. Wu, et al., “Effects of plasmonic metal core -dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017). https://doi.org/10.1038/s41598-017-08077-9

    Article  CAS  Google Scholar 

  6. A. G. Valenzuela, “Analytical approximation to the complex refractive index of nanofluids with extended applicability,” Opt. Express 27, 28048 (2019). https://doi.org/10.1364/OE.27.028048

    Article  Google Scholar 

  7. C. P. Byers, H. Zhang, D. F. Swearer, et al., “From tunable core-shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties,” Sci. Adv. 1, e1500988 (2015). https://doi.org/10.1126/sciadv.1500988

    Article  Google Scholar 

  8. V. V. Klimov, “Nanoplasmonics,” Phys. Usp. 51, 839 (2008).

    Article  Google Scholar 

  9. M. V. Golovkina and T. E. Obukhovich, “Amplification of an electromagnetic wave in composite structures with complex inclusions,” Al’manakh Sovrem. Nauki Obrazov. 84 (5–6), 53 (2014).

    Google Scholar 

  10. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  11. N. V. Selina and E. N. Tumayev, “Localized plasmon resonance,” Nanotechnol. Russ. 12, 285 (2017).

    Article  Google Scholar 

  12. A. A. Detlaf and B. M. Yavorskii, A Modern Handbook of Physics (Vysshaya Shkola, 2000; Mir, Moscow, 1982).

  13. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).

  14. A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1 (4), 393 (2000).

    Article  Google Scholar 

  15. G. J. C. Maxwell, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).

    Google Scholar 

  16. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25 (4), 13 (1994).

    Article  CAS  Google Scholar 

  17. A. M. Kudryashova, A. G. Galstyan, E. B. Faizuloev, et al., “Detection of adenovirus antigen by enzyme-linked immunosorbent assay with SERS signal detection,” Zh. Mikrobiol. Epidemiol. Immunobiol. 1 (3), 25 (2018). https://doi.org/10.36233/0372-9311-2018-3-25-31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Selina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selina, N.V. Metal–Dielectric Core–Shell Nanoparticles. Nanotechnol Russia 14, 451–455 (2019). https://doi.org/10.1134/S1995078019050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019050124

Navigation