Skip to main content
Log in

Comparative Structural Dynamic Analysis of Ultrathin Fibers of Poly-(3-Hydroxybutyrate) Modified by Tetraphenyl–Porphyrin Complexes with the Metals Fe, Mn, and Zn

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Complex studies combining X-ray diffraction analysis, thermophysical and dynamic measurements by the probe method, and scanning electron microscopy have been performed. The specific features of the crystalline and amorphous structures of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) containing tetraphenylporphyrin (TPP) complexes with manganese (in the form of MnCl2), zinc, and iron (in the form of FeCl3) in minor concentrations (0–5%) have been considered. It is shown that the addition of these complexes to PHB fibers changes the fiber morphology, and an increase in crystallinity and a symbatic decrease in the molecular mobility in dense and loose amorphous PHB regions are observed in the following sequence: PHB/TPP, PHB/Zn–TPP, PHB/MnCl2–TPP, and PHB/FeCl3–TPP. The effect of temperature on fibers (their annealing at 140°C) sharply increases the crystallinity and molecular mobility in amorphous regions of the fibers. Their exposure in an aqueous medium at 70°C leads to an increase in the melting enthalpy and retardation of the molecular dynamics only in the initial PHB; in modified fibers, however, this exposure reduces the enthalpy significantly. In this case, the molecular mobility of chains in amorphous regions increases. The fibrous materials obtained have bactericidal properties and should find application in designing new therapeutic systems of antibacterial and antitumor action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Yu. Yu. Enakieva, A. G. Bessmertnykh, Yu. G. Gorbunova, et al., Org. Lett. 11, 3842 (2009).

    Article  CAS  Google Scholar 

  2. The United States Patent and Trademark Office. http://www.uspto.gov/patents/.

  3. A. Rosa, G. Ricciardi, E. J. Baerends, et al., Inorg. Chem. 44, 6609 (2005).

    Article  CAS  Google Scholar 

  4. P. C. Ray and J. Leszczynski, Chem. Phys. Lett. 419, 578 (2006).

    Article  CAS  Google Scholar 

  5. C. Li, J. Ly, B. Lei, et al., J. Phys. Chem. B 108, 9646 (2004).

    Article  CAS  Google Scholar 

  6. V. Balzani, A. Credi, and M. Venturi, Chem.-Eur. J. 14, 26 (2008).

    Article  CAS  Google Scholar 

  7. J. E. Lovett, M. Hoffmann, and A. Cnossen, J. Am. Chem. Soc. 131, 13852 (2009).

    Article  CAS  Google Scholar 

  8. G. Sedghi, K. Sawada, L. J. Esdaile, et al., J. Am. Chem. Soc. 130, 8582 (2008).

    Article  CAS  Google Scholar 

  9. J. Kan, H. Wang, W. Sun, et al., Inorg. Chem. 52, 8505 (2013).

    Article  CAS  Google Scholar 

  10. J. Demel, P. Kubat, F. Millange, et al., Inorg. Chem. 52, 2779 (2013).

    Article  CAS  Google Scholar 

  11. O. Kleifeld, L. Rulek, O. Bogin, et al., Biochemistry 43, 7151 (2004).

    Article  CAS  Google Scholar 

  12. A. Modak, J. Mondal, and A. Bhaumik, Appl. Catal., A 459, 41 (2013).

  13. R. Pal, A. Ghonday, S. D. Bhutia, et al., Int. J. Bioassays 2, 1019 (2013).

    Google Scholar 

  14. A. Gaudard, E. Varlet-Marie, F. Bressolle, and M. Audran, Sports Med. 33, 187 (2003).

    Article  Google Scholar 

  15. P. D. Frischmann, K. Mahata, and F. Würthner, Chem. Soc. Rev. 42, 1847 (2013).

    Article  CAS  Google Scholar 

  16. M.-E. Ragoussi, G. de la Torre, and T. Torres, Eur. J. Org. Chem. 2013, 2832 (2013).

    Article  CAS  Google Scholar 

  17. N. B. Sul’timova, P. P. Levin, A. V. Lobanov, and A. M. Muzafarov, High Energy Chem. 47, 98 (2013).

    Article  CAS  Google Scholar 

  18. A. V. Lobanov, E. N. Golubeva, and M. Ya. Mel’nikov, Mendeleev Commun. 20, 343 (2010).

    Article  CAS  Google Scholar 

  19. A. V. Bychkova, A. L. Iordanskii, A. L. Kovarski, O. N. Sorokina, R. Yu. Kosenko, V. S. Markin, A. G. Filatova, K. Z. Gumargalieva, S. Z. Rogovina, and A. A. Berlin, Nanotechnol. Russ. 10, 325 (2015).

    Article  CAS  Google Scholar 

  20. S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, P. M. Tyubaeva, A. A. Popov and A. L. Iordanskii, Polymer Sci., Ser. A 59, 342 (2017). https://doi.org/10.7868/S2308112017030099

    Article  CAS  Google Scholar 

  21. S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, O. V. Shatalova, A. V. Lobanov, A. A. Popov, and A. L. Iordanskii, Polymer Sci., Ser. A 61, 70 (2019). https://doi.org/10.1134/S2308112019010164

    Article  CAS  Google Scholar 

  22. S. G. Karpova, A. A. Ol’khov, A. V. Lobanov, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 132 (2019).

    Article  CAS  Google Scholar 

  23. C. D. Tran, S. Duri, and A. L. Harkins, J. Biomed. Mater. Res. A, No. 8, 2248 (2013). doi.org/https://doi.org/10.1002/jbm.a.34520

  24. Yu. N. Filatov, Electroforming of Fibrous Materials (EFF Process) (Neft’ Gaz, Moscow, 1997) [in Russian].

  25. Z. Liang and J. H. Freed, J. Phys. Chem. B 1999, 6384 (1999).

    Article  CAS  Google Scholar 

  26. V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).

    Article  Google Scholar 

  27. A. M. Vasserman, A. L. Buchachenko, A. L. Kovarskii, and M. B. Neiman, Polym. Sci. U. S. S. R. 10, 2238 (1976).

    Article  Google Scholar 

  28. S. Vyazovkin, N. Koga, and C. V. Schick, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam, Boston, London, 2002).

    Google Scholar 

  29. S. G. Karpova, A. A. Olkhov, A. V. Bakirov, S. N. Chvalun, N. G. Shilkina and A. A. Popov, Russ. J. Phys. Chem. B 12, 142 (2018).

    Article  CAS  Google Scholar 

  30. A. A. Ol’khov, A. A. Krutikova, M. A. Gol’dshtrakh, et al., Materialovedenie, No. 7, 23 (2017).

    Google Scholar 

  31. A. A. Ol’khov, O. V. Staroverova, M. A. Gol’dshtrakh, A. V. Khvatov, K. Z. Gumargalieva, and A. L. Iordanskii, Russ. J. Phys. Chem. B 10, 830 (2016).

    Article  CAS  Google Scholar 

  32. H. Kuhling, Handbook of Physics (Wiley, New York, 1983).

    Google Scholar 

  33. A. A. Ol’khov, A. V. Lobanov, S. G. Karpova, A. V. Bychkova, A. A. Artyukh, A. N. Goloshchapov, and A. L. Iordanskii, Russ. J. Appl. Chem. 92, 505 (2019).

    Article  Google Scholar 

  34. T. A. Ageeva, S. A. Syrbu, and O. I. Koifmana, Macroheterocycles 2, 139 (2009).

    Article  CAS  Google Scholar 

  35. A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Phys. Chem. Inst., Moscow, 1977).

  36. Y. V. Tertyshnaya and L. S. Shibryaeva, Polym. Sci. B 55, 164 (2013).

    CAS  Google Scholar 

  37. P. P. Kamaev, Cand. Sci. (Chem.) Dissertation (Semenov Inst. Chem. Phys. RAS, Moscow, 2001).

  38. A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, et al., Polym. Sci., Ser. A 59, 343 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. U.J. Haenggi (Biomer, Krailling, Germany) for supplying poly-(3-hydroxybutyrate). The degree of crystallinity was measured by the DSC method on the DSC204 F1 device (Netzsch, Germany) at the Shared Research Center “New Materials and Technology,” Institute for Biochemical Physics, Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State Assignment for the Semenov Institute of Chemical Physics, Russian Academy of Sciences, project nos. AAAA-A18-118020890097-1 (in the part concerning the spectral measurements) and AAAA-A17-117040610309-0 (in the part concerning the calorimetric studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Ol’khov, A.A., Chvalun, S.N. et al. Comparative Structural Dynamic Analysis of Ultrathin Fibers of Poly-(3-Hydroxybutyrate) Modified by Tetraphenyl–Porphyrin Complexes with the Metals Fe, Mn, and Zn. Nanotechnol Russia 14, 367–379 (2019). https://doi.org/10.1134/S1995078019040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019040086

Navigation