Skip to main content
Log in

Luminescent Yttrium–Aluminum Garnet Ceramics Obtained by Conventional Sintering on Air

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—An yttrium aluminum garnet (YAG) luminescent ceramic activated by Ce3+ has been obtained by uniaxial static pressing followed by sintering in air at a temperature of 1650°C. The initial phosphor powder was characterized and the linear shrinkage dynamics studied. The morphological, elastoplastic, and optical-luminescent properties of the obtained YAG:Ce ceramic samples were studied. The technological mode for manufacturing ceramics of this type with a density of at least 98% and luminescence efficiency of 45% was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Chen, W. Xiang, X. Liang, et al., J. Eur. Ceram. Soc. 35, 859 (2015).

    Article  CAS  Google Scholar 

  2. D. Chen and Y. Chen, Ceram. Int. 40, 15325 (2014).

    Article  CAS  Google Scholar 

  3. S. Agarwal, M. S. Haseman, A. Khamehchi, et al., Opt. Mater. Express 7, 1055 (2017).

    Article  CAS  Google Scholar 

  4. N. Wei, L. Tiecheng, L. Feng, et al., Appl. Phys. Lett. 101, 061902 (2016).

    Article  Google Scholar 

  5. D. Haranath, H. Chander, P. Sharma, and S. Singh, Appl. Phys. Lett. 89, 173118 (2006).

    Article  Google Scholar 

  6. M. Raukas, J. Kelso, Y. Zheng, et al., ECS J. Solid State Sci. Technol. 2, 3168 (2013).

    Article  Google Scholar 

  7. E. S. Lukin, Ogneupory Tekh. Keram., No. 9, 13 (1997).

  8. S. F. Wang, J. Zhang, D. W. Lo, et al., Prog. Solid State Chem. 41, 20 (2013).

    Article  Google Scholar 

  9. V. V. Osipov, A. V. Ishchenko, V. A. Shitov, et al., Opt. Mater. 71, 45 (2016).

    Article  Google Scholar 

  10. K. Kamada, T. Yanagida, J. Pejchal, et al., J. Phys. D: Appl. Phys. 44, 1 (2011).

    Article  Google Scholar 

  11. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Opt. Mater. 33, 688 (2011).

    Article  CAS  Google Scholar 

  12. V. V. Osipov, A. V. Ishchenko, V. A. Shitov, et al., Opt. Mater. 71, 98 (2017).

    Article  CAS  Google Scholar 

  13. S. Hu, C. Lu, G. Zhou, et al., Ceram. Int. 42, 6935 (2016).

    Article  CAS  Google Scholar 

  14. E. H. Penilla, Y. Kodera, and J. E. Garay, Mater. Sci. Eng. B 177, 1172 (2012).

    Article  CAS  Google Scholar 

  15. R. Chaim, Mater. Sci. Eng., A 443, 25 (2007).

    Article  Google Scholar 

  16. N. Frage, S. Kalabukhov, N. Sverdlov, et al., J. Eur. Ceram. Soc. 30, 3331 (2010).

    Article  CAS  Google Scholar 

  17. M. Sokol, S. Kalabukhov, V. Kasiyan, et al., Opt. Mater. 38, 204 (2014).

    Article  CAS  Google Scholar 

  18. H. M. Wang, Z. Y. Huang, J. S. Jiang, et al., Mater. Des. 105, 9 (2016).

    Article  CAS  Google Scholar 

  19. D. Lozano-Mandujano, J. Zarate-Medina, R. Morales-Estrella, and J. Munoz-Saldana, Ceram. Int. 39, 3141 (2013).

    Article  CAS  Google Scholar 

  20. P. Palmero, B. Boneli, and G. Fantozzi, Mater. Res. Bull. 48, 2589 (2013).

    Article  CAS  Google Scholar 

  21. M.-L. Brandily-Anne, J. Lumeau, L. Glebova, et al., J. Non-Cryst. Solids 356, 2337 (2010).

    Article  CAS  Google Scholar 

  22. R. Reisfeld, H. Minti, A. Patra, et al., Spectrochim. Acta, Part A 54, 2143 (1998).

    Article  Google Scholar 

  23. A. Sontakke, J. Ueda, Y. Katayama, et al., J. Appl. Phys. 117, 013105 (2015).

    Article  Google Scholar 

  24. K. Zhang, H. Liu, Y. Wu, and W. Hu, J. Alloys Compd. 453, 265 (2008).

    Article  CAS  Google Scholar 

  25. Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng. B 106, 251 (2004).

    Article  Google Scholar 

  26. P. Dorenbos, J. Lumin. 136, 122 (2013).

    Article  CAS  Google Scholar 

  27. D. Valiev, T. Han, V. Vaganov, and S. Stepanov, J. Phys. Chem. Solids 116, 1 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out on the basis of the Nanocenter of Tomsk Polytechnic University with financial support from the Russian Foundation for Basic Research and the administration of Tomsk oblast (project no. 18-43-703014: Characterization of phosphor powder, study of the optical and luminescent properties of ceramic samples), and with partial support from the Russian Science Foundation (project no. 17-13-01233: Ceramic samples, XRD analysis, measurement of mechanical properties) and the state task “Science” (no. 11.7700.2017/BCh: Study of the linear shrinkage dynamics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Paygin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paygin, V.D., Stepanov, S.A., Valiev, D.T. et al. Luminescent Yttrium–Aluminum Garnet Ceramics Obtained by Conventional Sintering on Air. Nanotechnol Russia 14, 113–117 (2019). https://doi.org/10.1134/S1995078019020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020113

Navigation