Skip to main content
Log in

Microemulsions and Lyotropic Liquid Crystals of Lecithin as Systems for Transdermal Drug Delivery

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Reverse microemulsions in the lecithin–oleic acid–paraffin oil–avocado oil–tea tree essential oil–water system and lamellar liquid crystals in the lecithin–avocado oil–tea tree essential oil–water system were studied as systems for transdermal drug delivery. Oil- and water-soluble substances, as well as substances that are poorly soluble in water and oil in the form of solid-phase particles, can be introduced into liquid crystals in concentrations of a few percent. Oil-soluble substances can be introduced into reverse microemulsions in concentrations of a few percent and water-soluble substances can be introduced in concentrations of tenths of a percent. The dialysis method showed that the rate of release of water-soluble substances from the reverse microemulsion containing 4.8 wt % water is approximately 2.5 times higher than that from the lamellar liquid crystal containing 15 wt % water. This is explained by the fact that the viscosity of liquid crystals is more than 100 times higher than the viscosity of microemulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nanotherapeutics: Drug Delivery Concepts in Nanoscience, Ed. by A. Lamprecht (CRC, Boca Raton, FL., 2008; Nauchnyi Mir, Moscow, 2010).

  2. Yu. S. Tarakhovskii, Intelligent Lipid Nanocontainers in Targeted Drug Delivery (LKI, Moscow, 2011) [in Russian].

    Google Scholar 

  3. N. M. Murashova, E. S. Trofimova, and E. V. Yurtov, “Dynamics of scientific publications on the use of nanoparticles and nanostructures for targeted drug delivery,” Nanoindustriya 12, 24 (2019). http://www.nanoindustry.su/journal/article/7238.

    Article  Google Scholar 

  4. N. M. Murashova and E. V. Yurtov, “Lecithin organogels as prospective functional nanomaterial,” Nanotechnol. Russ. 10, 511 (2015). https://doi.org/10.1134/S199507801504014X

    Article  CAS  Google Scholar 

  5. A. Zabara and R. Mezzenga, “Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases,” J. Control. Release 188, 31 (2014). https://doi.org/10.1016/j.jconrel.2014.05.052

    Article  CAS  Google Scholar 

  6. E. Acosta, O. Chung, and X. Y. Xuang, “Lecithin-linker microemulsions in transdermal delivery,” J. Drug Deliv. Sci. Technol. 21, 77 (2011). https://doi.org/10.1016/S1773-2247(11)50007-3

    Article  CAS  Google Scholar 

  7. R. G. Alany, G. El Maghraby, K. Krauel-Goellner, and A. Graf, “Microemulsion systems and their potential as drug carriers,” in Microemulsions: Properties and Applications, Ed. by M. Fanun (CRC, Boca Raton, London, New York, 2008), p. 247.

    Google Scholar 

  8. M. J. Lawrence and G. D. Rees, “Microemulsion-based media as novel drug delivery systems,” Adv. Drug Deliv. Rev. 64 (Suppl.), 175 (2012). https://doi.org/10.1016/j.addr.2012.09.018

    Article  Google Scholar 

  9. M. Fanun, “Microemulsions as delivery systems,” Curr. Opin. Colloid Interface Sci. 17, 306 (2012). https://doi.org/10.1016/j.cocis.2012.06.001

    Article  CAS  Google Scholar 

  10. S. P. Callender, J. A. Mathews, K. Kobernyk, and S. D. Wettig, “Microemulsion utility in pharmaceuticals: implications for multi-drug delivery,” Int. J. Pharm. 526, 425 (2017). https://doi.org/10.1016/j.ijpharm.2017.05.005

    Article  CAS  Google Scholar 

  11. Ko Jin Young, Kim Ji Yeon, Park So Hyun, et al., “Sustained-release lipid pre-concentrate of pharmacologically active substance and pharmaceutical composition comprising the same,” WO Patent No. 2013/032207 (2013). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013032207.

  12. K. Thuresson, F. Tiberg, M. Johansson, et al., “Liquid depot formulations,” WO Patent No. 2005/117830 (2005). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2005117830.

  13. J. M. Seddon and R. H. Templer, “Polymorphism of lipid-water systems,” in Handbook of Biological Physics, Ed. by R. Lipowsky and E. Sackmann (Elsevier Science, Amsterdam etc., 1995), Vol. 1, p. 97.

    Google Scholar 

  14. R. Angelico, A. Ceglie, G. Colafemmina, et al., “Phase behavior of the lecithin/water/decane systems,” Langmuir 20, 619 (2004). https://doi.org/10.1021/la035603d

    Article  CAS  Google Scholar 

  15. Yu. A. Shchipunov, “Self-organising structures of lecithin,” Russ. Chem. Rev. 66, 301 (1997). https://doi.org/10.1070/RC1997v066n04ABEH000253

    Article  Google Scholar 

  16. N. M. Murashova, L. A. Prokopova, E. S. Trofimova, and E. V. Yurtov, “Effects of oleic acid and phospholipids on the formation of lecithin organogel and microemulsion,” J. Surfact. Deterg. 21, 635 (2018). https://doi.org/10.1002/jsde.12170

    Article  CAS  Google Scholar 

  17. N. M. Murashova, E. S. Trofimova, and E. V. Yurtov, “Lecithin composition,” RF Patent No. 262250 (2016). http://www1.fips.ru/registers-web/actionćName=clickRegister&regName=RUPAT.

  18. N. M. Murashova, M. Yu. Kostyuchenko, A. N. Bizyukova, and E. V. Yurtov, “Liquid crystal composition for transdermal delivery of biologically active substances,” RF Patent No. 2623210 (2016). http://www1.fips.ru/registers-web/actionćName=clickRegister&regName=RUPAT.

  19. N. M. Murashova, A. A. Dambieva, and E. V. Yurtov, “The effect of nano- and microparticles of iron (III) oxide on the viscosity of lamellar liquid crystals of lecithin,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 59 (5), 41 (2016).

    Article  CAS  Google Scholar 

  20. Pharmaceutical Development. Scientific-Practical Guide for the Pharmaceutical Sector, Ed. by S. N. Bykovskii (Pero, Moscow, 2015) [in Russian].

    Google Scholar 

  21. W. R. Kadhum, T. Hada, I. Hijikuro, et al., “Development and optimization of orally and topically applied liquid crystal drug formulations,” J. Oleo Sci. 66, 939 (2017). https://doi.org/10.5650/jos.ess17032

    Article  CAS  Google Scholar 

  22. A. Ebenazer, J. S. Franklyne, A. Mukherjee, and N. Chandrasekaran, “Development of azithromycin loaded lemongrass oil based microemulsion and determination of antibacterial potential,” Int. J. Appl. Pharmaceut. 10 (6), 72 (2018). https://doi.org/10.22159/ijap.2018v10i6.25417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Murashova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashova, N.M., Trofimova, E.S., Kostyuchenko, M.Y. et al. Microemulsions and Lyotropic Liquid Crystals of Lecithin as Systems for Transdermal Drug Delivery. Nanotechnol Russia 14, 68–73 (2019). https://doi.org/10.1134/S1995078019010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019010075

Navigation