Skip to main content
Log in

Effect of the Structure of Carbon Support on the Selectivity of Pt/C Catalysts for the Hydrogenation of Acetylene to Ethylene

  • Nanostructures, Including Nanotubes
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

By using electron microscopy and X-ray photoelectron spectroscopy (XPS), we show that the structure of support carbon materials—carbon nanofiber (CNF) and carbon nanotubes (CNTs)—affects the electronic state and dimensions of supported platinum particles that display a high catalytic activity in acetylene hydrogenation. Increasing the platinum load of Pt/CNF catalysts from 0.075 to 0.3 wt % results in the enhancement of their catalytic activity, while the selectivity for ethylene diminishes, which we attribute to the enlargement of the platinum nanoparticles. The XPS studies reveal that the platinum exists in, on average, a more oxidized state at the surface of CNTs when compared to CNF. The detection of substantial quantities of the residual chlorine at the surface of the prepared support materials allows us to relate the presence of the platinum in oxidized states to the existence of surface sites differing in quantity and the ability to stabilize platinum at the surface of nanocarbons. In addition, we have established that a fraction of the platinum in Pt/CNT catalysts is located inside of the CNTs. The differences between the states of CNT- and CNF-supported platinum nanoparticles affect catalyst selectivity: the Pt(0.075%)/CNT catalyst exhibits superior selectivity for ethylene hydrogenation than the Pt(0.075%)/CNF catalyst. The enhanced selectivity may be a consequence of the different electronic structures of the platinum in the considered catalysts and faster Knudsen diffusion of acetylene molecules, when compared to ethylene molecules, in CNT channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Burdick and W. L. Leffler, Petrochemicals in Nontechnical Language (PennWell, Tulsa, OK, 2010; Olimp-Biznes, Moscow, 2001).

    Google Scholar 

  2. A. Molnar, A. Sarkany, and M. Varga, “Hydrogenation of carbon-carbon multiple bonds: chemo-, regio-, and stereo-selectivity,” J. Mol. Catal., A 173, 185–221 (2001).

    Article  Google Scholar 

  3. N. A. Khan, S. Shaikhutdinov, and H.-J. Freund, “Acetylene and ethylene hydrogenation on alumina supported Pd–Ag model catalysts,” Catal. Lett. 108, 159–164 (2006).

    Article  Google Scholar 

  4. J. H. Kang, E. W. Shin, W. J. Kim, J. D. Park, and S. H. Moon, “Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb, and Ce oxides,” Catal. Today 63, 183–188 (2000).

    Article  Google Scholar 

  5. K. Flick, Ch. Herion, and H.-M. Allmann, “Supported palladium catalyst for selective catalytic hydrogenation of acetylene in hydrocarbonaceous streams,” US Patent No. 5856262 (1999).

    Google Scholar 

  6. C.-N. Thanh, B. Didillon, P. Sarrazin, and Ch. Cameron, “Selective hydrogenation catalyst and a process using that catalyst,” US Patent No. 6054409 (2000).

    Google Scholar 

  7. Y. Jin, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith, M. Holbrook, J. Maj, and J. Blackson, “Hydrogenation of acetylene has been investigated on Au/TiO2, Pd/TiO2 and Au–Pd/TiO2 catalysts at high acetylene conversion levels,” J. Catal. 203, 292–306 (2001).

    Article  Google Scholar 

  8. S. A. Blankenship, R. W. Voight, J. A. Perkins, and J. E. Fried, “Process for selective hydrogenation of acetylene in an ethylene purification process,” US Patent No. 6509292 (2003).

    Google Scholar 

  9. A. A. Lamberov and S. R. Egorova, “Catalyst for selective hydrogenation of diene hydrocarbons,” RF Patent No. 2292952, Byull. Izobret. No. 4 (2007).

    Google Scholar 

  10. J. B. Kimble and J. J. Bergmeister, “Hydrocarbon hydrogenation catalyst and process,” US Patent No. 6127588 (2000).

    Google Scholar 

  11. T.-T. P. Cheung and M. M. Johnson, “Hydrocarbon hydrogenation process,” US Patent No. 5866735 (1999).

    Google Scholar 

  12. D. Teschner, E. Vass, M. Havecker, S. Zafeiratos, P. Schnorch, H. Sauer, A. Rnop-Gericke, R. Schlogl, M. Chamam, A. Wootsch, A. S. Canning, J. J. Gamman, S. D. Jackson, J. McGregor, and L. F. Gladden, “Palladium nanoparticle catalysts in ionic liquids: synthesis, characterization and selective partial hydrogenation of alkynes to Z-alkenes,” J. Catal. 242, 26–37 (2006).

    Article  Google Scholar 

  13. G. Xu, C. M. Smith, J. Blackson, G. Salaita, G. Dunmoro, and P. A. Crozier, “TEM study on catalyst deactivation during selective acetylene hydrogenation,” Microsc. Microanal. 11, 1576–1577 (2005).

    Article  Google Scholar 

  14. D. C. Huang, K. H. Chang, W. F. Pong, P. K. Tseng, K. J. Hung, and W. F. Huang, “Effect of Ag-promotion on Pd catalysts by XANES,” Catal. Lett. 53, 155–159 (1998).

    Article  Google Scholar 

  15. C. A. Hamilton, S. D. Jackson, G. J. Kelly, R. Spence, and D. de Bruin, “Competitive reactions in alkyne hydrogenation,” Appl. Catal., A 237, 201–209 (2002).

    Article  Google Scholar 

  16. W. J. Kim, J. H. Kang, I. Y. Ahn, and S. H. Moon, “Deactivation behavior of a TiO2-added Pd catalyst in acetylene hydrogenation,” J. Catal. 226, 226–229 (2004).

    Article  Google Scholar 

  17. J. Panpranot, K. Kontapakdee, and P. Praserthdam, “Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported pd catalysts,” Appl. Catal., A 314, 128–133 (2006).

    Article  Google Scholar 

  18. J. H. Kang, E. W. Shin, W. J. Kim, J. D. Park, and S. H. Moon, “Selective hydrogenation of acetylene on TiO2-added Pd catalysts,” J. Catal. 208, 310–320 (2002).

    Article  Google Scholar 

  19. V. V. Chesnokov, I. P. Prosvirin, N. A. Zaitseva, V. I. Zaikovskii, and V. V. Molchanov, “Effect of the structure of carbon nanofibers on the state of an active componentand on the catalytic properties of Pd/C catalysts in the selective hydrogenation of 1,3butadiene,” Kinet. Catal. 43, 838 (2002).

    Article  Google Scholar 

  20. A. Borodzinski and G. C. Bond, “Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction,” Catal. Rev. 48, 91–144 (2006).

    Article  Google Scholar 

  21. G. Schulze, A. Sliwka, and G. Wittmann, “Selective hydrogenation of minor amounts of acetylene in a gas mixture containing major amounts of ethykene,” US Patent No. 3821323 (1974).

    Google Scholar 

  22. A. Frenzel, M. Hesse, A. Ansmann, and E. Schwab, “A supported catalyst for the selective hydrogenation of alkynes and dienes, a process for its preparation, and a method for selectively hydrogenating alkynes and dienes,” RF Patent 2290258, Byull. Izobret. No. 36 (2006).

    Google Scholar 

  23. B. S. Bal’zhinimaev, E. A. Paukshtis, A. N. Zagoruiko, and L. G. Simonova, “A method for the selective hydrogenation of acetylene hydrocarbons in gas mixtures rich in olefins,” RF Patent No. 2289565, Byull. Izobret. No. 35 (2006).

    Google Scholar 

  24. B. A. Wilhite, M. J. McCready, and A. Varma, “Kinetics of phenylacetylene hydrogenation over Pt/?-Al2O3 catalyst,” Ind. Eng. Chem. Res. 41, 3345–3350 (2002).

    Article  Google Scholar 

  25. L. Xu, Yu. Zhu, I. Le, L. Kong, and Sh. Gao, “A selective hydrogenation catalyst, a process for its preparation, and a method for selectively hydrogenating alkynes using it,” RF Patent No. 2259877, Byull. Izobret. No. 25 (2005).

    Google Scholar 

  26. N. A. Zaitseva, V. V. Molchanov, V. V. Chesnokov, R. A. Buyanov, V. I. Zaikovskii, and L. M. Plyasova, “Effect of the nature of coke forming species on the crystallographic characteristics and catalytic properties of metal-filamentous carbon catalystsin the selective hydrogenation of 1,3-butadiene,” Kinet. Catal. 44, 129 (2003).

    Article  Google Scholar 

  27. P. Serp, M. Corrias, and P. Kalck, “Carbon nanotubes and nanofibers in catalysis,” Appl. Catal., A 253, 337–358 (2003).

    Article  Google Scholar 

  28. R. S. Oosthuizen and V. O. Nyamori, “Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions,” Platinum Met. Rev. 55, 154–169 (2011).

    Article  Google Scholar 

  29. S. A. Chernyak, E. V. Suslova, A. S. Ivanov, A. V. Egorov, K. I. Maslakov, S. V. Savilov, and V. V. Lunin, “Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis,” Appl. Catal., A 523, 221–229 (2016).

    Article  Google Scholar 

  30. G. L. Bezemer, J. H. Bitter, H. P. C. E. Kuipers, H. Oosterbeek, J. E. Holewijn, X. Xu, F. Kapteijn, J. A. van Dillen, and K. P. de Jong, “Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts,” J. Am. Chem. Soc. 128, 3956–3964 (2006).

    Article  Google Scholar 

  31. E. Asedegbega-Nieto, B. Bachiller-Baeza, D. G. Kuvshinov, F. R. García-García, E. Chukanov, G. G. Kuvshinov, A. Guerrero-Ruiz, and I. Rodríguez-Ramos, “Effect of the carbon support nano-structures on the performance of Ru catalysts in the hydrogenation of paracetamol,” Carbon 46, 1046–1052 (2008).

    Article  Google Scholar 

  32. A. L. Dantas Ramos, P. Silva Alves, D. A. G. Aranda, and M. Schmal, “Characterization of carbon supported palladium catalysts: inference of electronic and particle size effects using reaction probes,” Appl. Catal., A 277, 71–81 (2004).

    Article  Google Scholar 

  33. V. V. Molchanov, V. V. Chesnokov, R. A. Buyanov, and N. A. Zaitseva, “New metal-carbon catalysts: I. Preparation procedure and application area,” Kinet. Catal. 39, 378 (1998).

    Google Scholar 

  34. V. V. Molchanov, V. V. Chesnokov, R. A. Buyanov, N. A. Zaitseva, V. I. Zaikovskii, L. M. Plyasova, V. I. Bukhtiyarov, I. P. Prosvirin, and B. N. Novgorodov, “New metal-carbon catalysts: II. The origin of selectivity of nickel catalystsin hydrogenation reactions,” Kinet. Catal. 39, 386 (1998).

    Google Scholar 

  35. V. V. Chesnokov, I. P. Prosvirin, V. I. Zaikovskii, and N. A. Zaitseva, “State of the active component and catalytic properties of Pd/C catalysts on the selective hydrogenation of butadiene-1,3 into butylenes,” Euras. Chem. Tech. J. 5, 127–135 (2003).

    Article  Google Scholar 

  36. V. V. Chesnokov, R. A. Buyanov, and A. S. Chichkan’, “Catalyst and technology for production of carbon nanotubes,” Kinet. Catal. 51, 776 (2010).

    Article  Google Scholar 

  37. V. V. Chesnokov and A. S. Chichkan, “Production of hydrogen by methane catalytic decomposition over Ni–Cu–Fe/Al2O3 catalyst,” Int. J. Hydrogen Energy 34, 2979–2985 (2009).

    Article  Google Scholar 

  38. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).

    Google Scholar 

  39. C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, and C. J. Rumble, NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5 (Natl. Inst. Stand. Technol., Gaithersburgh, 2003).

    Google Scholar 

  40. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, V. S. Koscheev, V. I. Zaikovskii, and A. I. Boronin, “Highly oxidized platinum nanoparticles prepared through radio-frequency sputtering: thermal stability and reaction probability towards Co,” Chem. Phys. Chem. 16, 3318–3324 (2015).

    Article  Google Scholar 

  41. A. V. Kalinkin, M. Y. Smirnov, A. I. Nizovskii, and V. I. Bukhtiyarov, “X-ray photoelectron spectra of platinum compounds excited with monochromatic AgLa irradiation,” J. Electron Spectrosc. Relat. Phenom. 177, 15–18 (2010).

    Article  Google Scholar 

  42. M. G. Mason, “Electronic structure of supported small metal clusters,” Phys. Rev. B 27, 748–762 (1983).

    Article  Google Scholar 

  43. D. I. Kochubey, V. V. Chesnokov, and S. E. Malykhin, “Evidence for atomically dispersed pd in catalysts supported on carbon nanofibers,” Carbon 50, 2782–2787 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chesnokov.

Additional information

Original Russian Text © V.V. Chesnokov, D.A. Svintsitskii, A.S. Chichkan’, V.N. Parmon, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, V.V., Svintsitskii, D.A., Chichkan’, A.S. et al. Effect of the Structure of Carbon Support on the Selectivity of Pt/C Catalysts for the Hydrogenation of Acetylene to Ethylene. Nanotechnol Russia 13, 246–255 (2018). https://doi.org/10.1134/S1995078018030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018030047

Navigation