Skip to main content
Log in

A Study of Titanium Dioxide Nanoparticle Biokinetics via the Radiotracer Technique upon Intragastrical Administration to Laboratory Mammals

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A radiotracer technique is developed using titanium dioxide nanoparticles labeled by fast protons with the acquisition of a 48V radioactive isotope, and the biokinetics of these brookite nanoparticles in the organisms of laboratory rats within the one-time intragastrical injection are studied. The main result of this work is the detection of titanium dioxide in the colon even within 5 days after injecting the slurry in an amount of 0.4% from the total exposition dose, which evidences the accumulation of titanium dioxide nanoparticles in the organ. This means that macro- and nano-fractions of titanium dioxide particles can be potentially dangerous for the colon, exerting a toxic and carcinogenic influence on its epithelial cells. Moreover, some traces of titanium dioxide nanoparticles are found to penetrate into the blood and liver. However, 98% of titanium dioxide is eliminated from the organism with feces within 5 days after injection. Neither kidneys nor brain exhibit the presence of titanium dioxide residues. This effect is due to the agglomeration of titanium dioxide nanoparticles, which is already significant and prompt in the solution for injection. At the same time, despite the ability of agglomerates to dissociate in the acidic medium of the stomach, only a few amounts of titanium dioxide pass into a nanometric form, which then penetrates through the colon into blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Osmond-McLeod, Y. Oytam, A. Rowe, F. Sobhanmanesh, G. Greenoak, J. Kirby, E. F. McInnes, and M. J. McCall, “Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model,” Part. Fiber Toxicol. 13 (1), 44–57 (2016).

    Article  Google Scholar 

  2. M. Tsugita, N. Morimoto, and M. Nakayama, “SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses,” Part. Fiber Toxicol. 14 (11), 11–20 (2017).

    Article  Google Scholar 

  3. Y. Xu, M. Hadjiargyrou, M. Rafailovich, and T. Mironava, “Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles,” J. Nanobiotechnol. 15 (50), 50–67 (2017).

    Article  Google Scholar 

  4. S. Q. Li, R. R. Zhu, H. Zhu, M. Xue, X. Y. Sun, S. D. Yao, and S. L. Wang, “Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro,” Food Chem. Toxicol. 46, 3626–3632 (2008).

    Article  Google Scholar 

  5. A. A. Antsiferova, P. K. Kashkarov, and M. V. Koval’-chuk, “Nanoparticles in biosphere,” in Metal/Semiconductor Containing Nanocomposites, Ed. by L. I. Trakhtenberg and M. Ya. Mel’nikov (Tekhnosfera, Moscow, 2016) [in Russian].

    Google Scholar 

  6. S. Prabhu and E. K. Poulose, “Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects,” Int. Nano Lett. 2 (32), 1 (2012).

    Google Scholar 

  7. M. Roco, “Environmentally responsible development of nanotechnology,” Environ. Sci. Technol. 39, 106A–113A (2005).

    Article  Google Scholar 

  8. C. Pokhum, D. Viboonratanasri, and C. Chawengkijwanich, “New insight into the disinfection mechanism of fusarium monoliforme and aspergillus niger by TiO2 photocatalyst under low intensity UVA light,” J. Photochem. Photobiol. B 176, 17–25 (2017).

    Article  Google Scholar 

  9. L. V. Zhukova, J. Kiwi, and V. V. Nikandrov, “TiO2 nanoparticles suppress escherichia coli cell division in the absence of UV irradiation in acidic conditions,” Colloids Surf. B: Biointerfaces 97, 240–247 (2012).

    Article  Google Scholar 

  10. E. Q. Youkhana, B. Feltis, A. Blencowe, and M. Geso, “Titanium dioxide nanoparticles as radiosensitisers: an in vitro and phantom-based study,” Int. J. Med. Sci. 14, 602–615 (2017).

    Article  Google Scholar 

  11. R. Ion, S. I. Drob, M. F. Ijaz, C. Vasilescu, P. Osiceanu, D. M. Gordin, A. Cimpean, and Th. Gloriant, “Surface characterization, corrosion resistance and in vitro biocompatibility of a new Ti–Hf–Mo–Sn alloy,” Materials (Basel) 9 (818), 1 (2016).

    Google Scholar 

  12. H. Shang, D. Han, M. Ma, S. Li, W. Xue, and A. Zhang, “Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration,” J. Photochem. Photobiol., Ser. B 177, 112–124 (2017).

    Article  Google Scholar 

  13. T. Rasheed, M. Bilal, H. M. N. Iqbal, S. Z. H. Shah, H. Hu, X. Zhang, and Y. Zhou, “TiO2/UV-assisted rhodamine B degradation: Putative pathway and identification of intermediates by UPLC/MS,” Environ. Technol., 1–11 (2017).

    Google Scholar 

  14. K. Bhattacharya, G. Kilic, P. M. Costa, and B. Fadeel, “Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential,” Nanotoxicology 11, 809–827 (2017).

    Google Scholar 

  15. M. Tu, Y. Huang, H.-L. Li, and Z. H. Gao, “The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell,” Toxicology 299, 60–69 (2012).

    Article  Google Scholar 

  16. R. V. Raspopov, Yu. P. Buzulukov, N. S. Marchenkov, V. Yu. Solov’ev, V. F. Demin, V. S. Kalistratova, I. V. Gmoshinskii, and S. A. Khotimchenko, “Bioavailability of zinc oxide nanoparticles. Studying by radioactive indicator method,” Vopr. Pitan., No. 6, 14–19 (2010).

    Google Scholar 

  17. E. A. Mel’nik, Yu. P. Buzulukov, V. F. Demin, I. V. Gmoshinskii, N. V. Tyshko, and V. A. Tutel’yan, “Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats,” Acta Natur. 5 (3), 107–115 (2013).

    Google Scholar 

  18. V. A. Demin, A. A. Antsiferova, Yu. P. Buzulukov, I. V. Gmoshinsky, V. F. Demin, and P. K. Kashkarov, “Mathematical simulation of the biokinetics of selenium nanoparticles and salt forms in living organisms,” Nanotechnol. Russ. 12, 305–314 (2017).

    Article  Google Scholar 

  19. Yu. P. Buzulukov, E. A. Arianova, V. F. Demin, I. V. Safenkova, I. V. Gmoshinski, and V. A. Tutelyan, “Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis,” Biol. Bull. 41 255–263 (2014).

    Google Scholar 

  20. A. A. Antsiferova, Yu. P. Buzulukov, P. K. Kashkarov, and M. V. Kovalchuk, “Experimental and theoretical study of the transport of silver nanoparticles at their prolonged administration into a mammal organism,” Crystallogr. Rep. 61, 988–995 (2016).

    Article  Google Scholar 

  21. A. A. Antsiferova, Yu. P. Buzulukov, V. A. Demin, V. F. Demin, D. A. Rogatkin, E. N. Petritskaya, L. F. Abaeva, and P. K. Kashkarov, “Radiotracer methods and neutron activation analysis for the investigation of nanoparticle biokinetics in living organisms,” Nanotechnol. Russ. 10, 100–108 (2015).

    Article  Google Scholar 

  22. A. A. Antsiferova, Yu. P. Buzulukov, V. A. Demin, P. K. Kashkarov, M. V. Kovalchuk, and E. N. Petritskaya, “Extremely low level of Ag nanoparticle excretion from mice brain in in vivo experiments,” IOP Conf. Ser.: Mater. Sci. Eng. 98, 1–6 (2015).

    Article  Google Scholar 

  23. Yu. P. Buzulukov, I. V. Gmoshinskii, R. V. Raspopov, V. F. Demin, V. Yu. Solov’ev, P. G. Kuz’min, G. A. Shafeev, and S. A. Khotimchenko, “Studies of some inorganic nanoparticles after intragastric administration to rats using radioactive tracers,” Med. Radiol. Radiats. Bezopasn. 57 (3), 5–12 (2012).

    Google Scholar 

  24. W. G. Kreyling, A. Wenk, and M. Semmler-Behnke, “Quantitative biokinetik-analyse radioaktiv markierter inhalierter titandioxid-nanopartikel in einem rattenmodell,” Umwelt Gesundheit, 1–6 (2010).

    Google Scholar 

  25. Y. Sagawa, M. Futakuchi, J. Xu, K. Fukamachi, Y. Sakai, Y. Ikarashi, T. Nishimura, M. Suzui, H. Tsuda, and A. Morita, “Lack of promoting effect of titanium dioxide particles on chemically-induced skin carcinogenesis in rats and mice,” J. Toxicol. Sci. 37, 317–328 (2012).

    Article  Google Scholar 

  26. E. V. Bessudnova, “Synthesis and investigation of nanosized titanium dioxide particles for use in catalysis and nanobiotechnology,” Cand. Sci. (Chem.) Dissertation (Novosibirsk, 2014).

    Google Scholar 

  27. A. A. Keller, H. Wang, D. Zhou, and H. L. Lenihan, “Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices,” Environ. Sci. Technol. 44, 1962–1968 (2010).

    Article  Google Scholar 

  28. M. A. Pugachevskii, “Morphology and phase changes in laser-ablated TiO2 particles during thermal annealing,” Tech. Phys. Lett. 38, 328 (2012).

    Article  Google Scholar 

  29. Y. Bai, I. Mora-Sero, F. de Angelis, and J. Bisquert, “Titanium dioxide nanomaterials for photovoltaic applications,” Chem. Rev. 114, 10095–10131 (2014).

    Article  Google Scholar 

  30. C. E. Hsiugn, H. L. Lien, A. E. Galliano, C. S. Yeh, and Y. H. Shih, “Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: role of double-layer compression and charge neutralization,” Chemosphere 151, 145–152 (2016).

    Article  Google Scholar 

  31. V. F. Demin, A. A. Antsiferova, Yu. P. Buzulukov, V. A. Demin, and V. Yu. Solov’ev, “Nuclear-physical method for the detection of chemical elements in biological and other samples using activation by charged particles,” Med. Radiol. Radiats. Bezopasn. 60 (2), 60–65 (2015).

    Google Scholar 

  32. V. A. Tutel’yan, I. V. Gmoshinskii, S. A. Khotimchenko, M. M. Gapparov, L. S. Vasilevskaya, V. K. Mazo, V. V. Bessonov, O. I. Perederyaev, E. A. Arianova, O.N. Tananova, A. A. Shumakova, R. V. Raspopov, V. A. Shipelin, V. F. Demin, V. M. Shmelev, et al., “The order and methods for determining the organotropicity and toxicokinetic parameters of man-made nanomaterials in tests on laboratory animals,” Methodic Recommendations MR 1.2.0048-11 (Moscow, 2011).

    Google Scholar 

  33. R. V. Raspopov, V. M. Vernikov, A. A. Shumakova, T. B. Sentsova, E. N. Trushina, O. K. Mustafina, I. V. Gmoshinskii, S. A. Khotimchenko, V. A. Tutel’yan, I. V. Aksenov, L. V. Kravchenko, L. I. Avren’eva, G. V. Guseva, N. V. Lashneva, V. V. Bessonov, G. N. Ivanova, and A. V. Selifanov, “Toxicological sanitary characterization of titanium dioxide nanoparticles introduced in gastrointestinal tract of rats. Communication 1. Integral, biochemical, and hematoliogic indices, intestinal absorption of macro-molecules DNA damage,” Vopr. Pitan. 79 (4), 21–30 (2010).

    Google Scholar 

  34. S. Bettini, E. Boutet-Robinet, Ch. Cartier, Ch. Comera, E. Gaultier, J. Dupuy, N. Naud, S. Tache, P. Grysan, S. Reguer, N. Theiriet, M. Refregiers, D. Thiaudiere, J.-P. Cravedi, M. Carriere, J.-N. Audinot, F. H. Pierre, L. Guzylak-Piriou, and E. Houdeau, “Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon,” Sci. Rep. 7, 40373 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Antsiferova.

Additional information

Original Russian Text © A.A. Antsiferova, E.S. Kormazeva, V.F. Demin, P.K. Kashkarov, M.V. Koval’chuk, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antsiferova, A.A., Kormazeva, E.S., Demin, V.F. et al. A Study of Titanium Dioxide Nanoparticle Biokinetics via the Radiotracer Technique upon Intragastrical Administration to Laboratory Mammals. Nanotechnol Russia 13, 51–60 (2018). https://doi.org/10.1134/S1995078018010020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018010020

Navigation