Skip to main content
Log in

Alternative correlative microscopy in the studies of cell nucleus subcompartments

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A new method combining atomic force (AFM) and confocal laser scanning microscopy (CLSM) and permitting not only to obtain information about the surface topography of nanostructures in the cell nucleus, but to simultaneously identify their molecular composition by using fluorescent dyes and treatment with specific enzymes, is proposed. The content of the vegetative nuclei of the ciliate Paramecium caudatum stained with DAPI for revealing DNA and fluorescently labeled phalloidin specifically binding fibrillar actin was been sequentially studied using CLSM and AFM and by successive analysis with AFM after RNAse and Proteinase K treatments. The proposed method allows one to characterize the surface topography of chromatin and RNP-complexes and reveal nanostructures containing nuclear actin which cannot be visualized using CLSM only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sartori, R. Gatz, F. Beck, A. Rigort, W. Baumeister, and J. M. Plitzko, “Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography,” J. Struct. Biol. 160, 135–145 (2007).

    Article  Google Scholar 

  2. M. A. Karreman, Van E. G. Donselaar, A. V. Agronskaia, C. T. Verrips, and H. C. Gerritsen, “Novel contrasting and labeling procedures for correlative microscopy of thawed cryosections,” J. Histochem. Cytochem. 61, 236–247 (2013).

    Article  Google Scholar 

  3. M. Perkovic, M. Kunz, U. Endesfelder, S. Bunse, C. Wigge, Z. Yu, V.-V. Hodirnau, M. P. Scheffer, A. Seybert, S. Malkusch, E. M. Schuman, M. Heilemann, and A. S. Frangakis, “Correlative light- and electron microscopy with chemical tags,” J. Struct. Biol. 186, 205–213 (2014).

    Article  Google Scholar 

  4. D. Czajkowsky, H. Iwamoto, and Z. Shao, “Atomic force microscopy in structural biology: from the subcellular to the submolecular,” J. Electron Microsc. 49, 395–406 (2000).

    Article  Google Scholar 

  5. E. V. Dubrovin, T. N. Murugova, K. A. Motovilov, L. S. Yaguzhinskii, and I. V. Yaminsky, “Application of atomic-force microscopy technology to a structural analysis of the mitochondrial inner membrane,” Nanotechnol. Russ. 4, 876 (2009).

    Article  Google Scholar 

  6. K.-T. Chang, M.-J. Tsai, Y.-T. Cheng, J.-J. Chen, R.-H. Hsia, Y.-S. Lo, Y.-R. Ma, and C.-F. Weng, “Comparative atomic force and scanning electron microscopy: an investigation of structural differentiation of hepatic stellate cells,” J. Struct. Biol. 167, 200–208 (2009).

    Article  Google Scholar 

  7. D. I. Sokolov, O. M. Ovchinnikova, D. A. Korenkov, A. N. Viknyanschuk, K. A. Benken, K. V. Onokhin, and S. A. Selkov, “Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes,” Transl. Res. 170, 112–123 (2014).

    Article  Google Scholar 

  8. D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, and T. Ando, “Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy,” Biophys. J. 97, 2358–2367 (2009).

    Article  Google Scholar 

  9. I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, “Application of atomic force microscopy for single intermolecular interactions characteristics,” Usp. Biol. Khim. 52, 281–314 (2012).

    Google Scholar 

  10. V. F. Lazarev, K. A. Benken, P. I. Semenyuk, S. V. Sarantseva, O. I. Bolshakova, E. R. Mikhaylova, V. I. Muronetz, I. V. Guzhova, and B. A. Margulis, “GAPDH binders as potential drugs for the therapy of polyglutamine diseases: design of a new screening assay,” FEBS Lett. 589, 581–587 (2015).

    Article  Google Scholar 

  11. H. Wang, R. Bash, J. Yodh, G. Hager, D. Lohr, and S. M. Lindsay, “Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin,” Biophys. J. 83, 3619–3625 (2002).

    Article  Google Scholar 

  12. D. Lohr, R. Bash, H. Wang, J. Yodh, and S. Lindsay, “Using atomic force microscopy to study chromatin structure and nucleosome remodeling,” Methods 41, 333–341 (2007).

    Article  Google Scholar 

  13. J. T. Marques, A. S. Viana, and R. F. M. de Almeida, “Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts,” Biochim. Biophys. Acta 1808, 405–414 (2011).

    Article  Google Scholar 

  14. E. V. Dubrovin, G. V. Presnova, M. Yu. Rubtsova, A. M. Egorov, V. G. Grigorenko, and I. V. Yaminskii, “The use of atomic force microscopy for 3D analysis of nucleic acid hybridization on microarrays,” Acta Natur. 7, 108–114 (2015).

    Google Scholar 

  15. K. A. Benken and E. V. Sabaneeva, “Fibrillar actin in the nuclear apparatus of the ciliate Paramecium caudatum,” Tsitologiya 53, 528–536 (2011).

    Google Scholar 

  16. E. Kiseleva, S. P. Drummond, M. W. Goldberg, S. A. Rutherford, T. D. Allen, and K. L. Wilson, “Actin and protein 4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus laevis oocyte nucleus,” J. Cell Sci. 117, 2481–2490 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Benken.

Additional information

Original Russian Text © K.A. Benken, E.V. Sabaneyeva, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 5–6.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benken, K.A., Sabaneyeva, E.V. Alternative correlative microscopy in the studies of cell nucleus subcompartments. Nanotechnol Russia 12, 291–298 (2017). https://doi.org/10.1134/S1995078017030041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017030041

Navigation