Skip to main content
Log in

Plasmodynamic synthesis of ultrafine crystalline phases in the Ti–C–N system

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper shows the possibility of using the plasmodynamic method for synthesizing ultrafine powders of the Ti–C–N system using different techniques for introducing a precursor. The synthesized powder is analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. It is found that the main phase in the synthesized products is monocrystalline cubic titanium carbide TiC independent of the technique of C and N precursor feed and the external gas atmosphere (argon or nitrogen). At the same time, the highest content of TiC phase is about 90.0%, and this value was reached by the synthesis in an argon atmosphere, while in the experiments in a nitrogen atmosphere the predominant yield of ternary phases in the Ti–C–N system is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Sivkov, A. Ya. Pak, I. A. Rakhmatullin, and K. N. Shatrova, “Production of ultrafine tungsten carbide in a discharge plasma jet,” Nanotechnol. Russ. 9, 682 (2014).

    Article  Google Scholar 

  2. A. Sivkov, A. Pak, I. Shanenkov, J. Kolganova, and K. Shatrova, “Synthesis of ultra dispersed graphite-like structures doped with nitrogen in supersonic carbon plasma flow,” IOP Conf. Ser.: Mater. Sci. Eng. 66, 012001 (2014).

    Article  Google Scholar 

  3. A. Sivkov, E. Naiden, A. Ivashutenko, and I. Shanenkov, “Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of e-Fe2O3,” J. Magn. Magn. Mater. 405, 158–168 (2016).

    Article  Google Scholar 

  4. A. A. Sivkov and I. A. Rakhmatullin, “Plasmadynamic synthesis of dispersed crystalline phases in supersonic jet of boron carbon electrodischarged plasma,” Nanotechnol. Russ. 10, 917 (2015).

    Article  Google Scholar 

  5. D. S. Nikitin, A. A. Sivkov, A. Y. Pak, and I. A. Rakhmatullin, “Plasmodynamic synthesis of nanodispersed silicon carbide,” Adv. Mater. Res. 1040, 735–739 (2014).

    Article  Google Scholar 

  6. A. A. Sivkov, A. S. Saigash, I. I. Shanenkov, D. Yu. Gerasimov, and A. A. Evdokimov, “Direct dynamic synthesis of nanodispersed powder material on titanium-base in pulsed electric-discharge plasma jet,” in Proceedings of the 7th International Forum on Strategic Technology, IFOST, Tomsk, Russia, Sept. 18–21, 2012 (2012). doi 10.1109/IFOST.2012.635756210.1109/IFOST. 2012.6357562

    Google Scholar 

  7. A. A. Evdokimov, A. A. Sivkov, D. Y. Gerasimov, A. S. Saigash, and A. O. Khasanov, “Possibility of implementation of the complete cycle of synthesizing bulk polycrystalline titanium nitride with submicron composition by plasmodynamic methods,” Russ. Phys. J. 55, 983–991 (2013).

    Article  Google Scholar 

  8. A. Sivkov, I. Shanenkov, A. Pak, D. Gerasimov, and Y. Shanenkova, “Deposition of a TiC/Ti coating with a strong substrate adhesion using a high-speed plasma jet,” Surf. Coat. Technol. 291, 1–6 (2016).

    Article  Google Scholar 

  9. A. A. Sivkov, D. Yu. Gerasimov, and A. A. Evdokimov, “Influence of the supplied energy on electroerosion recovery of material in an electrotechnical accelerator,” Instrum. Exp. Tech. 57, 222–225 (2014).

    Article  Google Scholar 

  10. A. A. Sivkov, D. Yu. Gerasimov, and A. S. Tsybina, “Electroerosive production of coating material in a coaxial magnetic-plasma accelerator,” Russ. Electr. Eng. 76, 27–35 (2005).

    Google Scholar 

  11. B. H. Lohse, A. Calka, and D. Wexler, “Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloys Compd. 434–435, 405–409 (2007).

    Article  Google Scholar 

  12. I. Dreiling, D. Stiens, and T. Chassé, “Raman spectroscopy investigations of TiBxCyNz coatings deposited by low pressure chemical vapor deposition,” Surf. Coat. Technol. 205, 1339–1344 (2010).

    Article  Google Scholar 

  13. A. Z. Ait Djafer, N. Saoula, N. Madaoui, and A. Zerizer, “Deposition and characterization of titanium carbide thin films bymagnetron sputtering using Ti and TiC targets,” Appl. Surf. Sci. 312, 57–62 (2014).

    Article  Google Scholar 

  14. S. Sedira, S. Achour, A. Avci, and V. Eskizeybek, “Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use,” Appl. Surf. Sci. 295, 81–85 (2014).

    Article  Google Scholar 

  15. B. H. Lohse, A. Calka, and D. Wexler, “Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloys Compd. 434–435, 405–409 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Shatrova.

Additional information

Original Russian Text © A.A. Sivkov, A.S. Ivashutenko, D.Yu. Gerasimov, K.N. Shatrova, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivkov, A.A., Ivashutenko, A.S., Gerasimov, D.Y. et al. Plasmodynamic synthesis of ultrafine crystalline phases in the Ti–C–N system. Nanotechnol Russia 12, 27–39 (2017). https://doi.org/10.1134/S1995078017010128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017010128

Navigation