Skip to main content
Log in

Localized electrons and phonons in branched polyacetylene molecules

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The electronic and vibrational characteristics of a Y splitter based on trans-polyacetylene molecular chains are studied using the density functional method. It is shown that the localized electronic states are formed at the branching point. Their energy is determined by the mutual orientation and length of the branches. The Raman-active localized vibrational modes are present in a phonon spectrum of a splitter. The intensity of the fundamental oscillation is determined by the maximum length of the linear conjugated fragment of a splitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zheng, S. Li, Zh. Wenga, et al., Chem. Soc. Rev. 44, 4091 (2015).

    Article  Google Scholar 

  2. M. K. Mishra and Sh. Kobayashi, Star and Hyperbranched Polymers (Marcel Dekker, New York, 1999), p. 350.

    Google Scholar 

  3. J. W. Y. Lam and B. Zh. Tang, J. Polym. Sci., Part A 41, 2607 (2003).

    Article  Google Scholar 

  4. J. W. Y. Lam and B. Zh. Tang, Acc. Chem. Res. 38, 745 (2005).

    Article  Google Scholar 

  5. C. Gao and D. Yan, Prog. Polym. Sci. 29, 183 (2004).

    Article  Google Scholar 

  6. B. I. Voit and A. Lederer, Chem. Rev. 109, 5924 (2009).

    Article  Google Scholar 

  7. A. Hirao, T. Higashihara, M. Nagura, et al., Macromolecules 39, 6081 (2006).

    Article  Google Scholar 

  8. Y. Zhao, T. Higashihara, K. Sugiyama, et al., Macromolecules 40, 228 (2007).

    Article  Google Scholar 

  9. A. A. Gorbatsevich and M. N. Zhuravlev, JETP Lett. 100, 576 (2014).

    Article  Google Scholar 

  10. A. Hirao, Y. Karasawa, T. Higashihara, et al., Des. Monom. Polym. 7 (6), 647 (2004).

    Article  Google Scholar 

  11. G. A. Snook, P. Kao, and A. S. Best, J. Power Sources 196, 1 (2011).

    Article  Google Scholar 

  12. J. Ma, Sh. Li, and Yu. Jiang, Macromolecules 35, 1109 (2002).

    Article  Google Scholar 

  13. M. J. G. Peach, E. I. Tellgren, P. Salek, et al., J. Phys. Chem. A 111, 11930 (2007).

    Article  Google Scholar 

  14. A. J. Heeger, Rev. Mod. Phys. 73, 681 (2001).

    Article  Google Scholar 

  15. A. J. Heeger, S. Kivelson, J. R. Schrieffer, et al., Rev. Mod. Phys. 60, 781 (1988).

    Article  Google Scholar 

  16. E. R. Blythe and D. Bloor, Electrical Properties of Polymers (Cambridge Univ. Press, Cambridge, 2008; Fizmatlit, Moscow, 2008).

    Google Scholar 

  17. J. A. Pople and S. H. Walmsley, Mol. Phys. 5, 15 (1962).

    Article  Google Scholar 

  18. S. A. Brazovskii, JETP Lett. 28, 606 (1978).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

    Google Scholar 

  20. J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy (Academic, New York, 2003), p. 434.

    Google Scholar 

  21. C. Castiglioni, M. Tommasini, and G. Zerbi, Phil. Trans. R. Soc. London A 362, 2425 (2004).

    Article  Google Scholar 

  22. M. Giacomo and S. Saveria, Carbon the Future Material for Advanced Technology Applications (Springer, Berlin, Heidelberg, 2006).

    Google Scholar 

  23. H. E. Schaffer, R. R. Chance, R. J. Silbey, et al., J. Chem. Phys. 94, 4161 (1991).

    Article  Google Scholar 

  24. I. Harada, Yu. Furukawa, M. Tasumi, et al., J. Chem. Phys. 73 (10), 4746 (1980).

    Article  Google Scholar 

  25. E. J. Heller, Yu. Yang, and L. Kocia, ACS Cent. Sci. 1, 40 (2015).

    Article  Google Scholar 

  26. D. Schäfer-Siebert, S. Roth, C. Budrowski, et al., Synth. Met. 21, 285 (1987).

    Article  Google Scholar 

  27. B. L. Feringa, R. A. van Delden, N. Koumura, et al., Chem. Rev. 100, 1789 (2000).

    Article  Google Scholar 

  28. J. M. J. Frechet and D. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, Chichester, UK, 2001).

    Book  Google Scholar 

  29. V. Balzani, P. Ceroni, M. Maestri, et al., Curr. Opin. Chem. Biol. 7, 657 (2003).

    Article  Google Scholar 

  30. V. Balzani, S. Campagna, G. Denti, et al., Acc. Chem. Res. 31, 26 (1998).

    Article  Google Scholar 

  31. M. Siltanen, S. Cattaneo, E. Vuorimaa, et al., J. Chem. Phys. 121, 2445 (2004).

    Article  Google Scholar 

  32. D. S. Bradshaw, L. David, and D. L. Andrews, Polymers 3, 2053 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorbatsevich.

Additional information

Original Russian Text © A.A. Gorbatsevich, M.N. Zhuravlev, T.S. Kataeva, V.M. Kobryanskii, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatsevich, A.A., Zhuravlev, M.N., Kataeva, T.S. et al. Localized electrons and phonons in branched polyacetylene molecules. Nanotechnol Russia 11, 820–829 (2016). https://doi.org/10.1134/S1995078016060100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016060100

Navigation