Skip to main content
Log in

Effects of fullerenol C60(OH)24 on physiological and compensatory erythropoiesis

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this work, the effect of fullerenol on erythropoiesis was investigated in healthy rats and in rats that had suffered blood loss in the amount of 2% of body weight. Fullerenol C60(OH)24 was diluted in 2 mL of 0.9% sodium chloride solution and injected intraperitoneally in a dose of 0.1 or 0.2 mg/kg body weight. The counts of reticulocytes, erythrocytes, and serum erythropoietin levels were determined in 48 and 96 h, as were the numbers of erythroid cells and erythroblastic islands (EIs) of different maturity fractions in the bone marrow and the fraction of the red pulp in the spleen. In intact rats, the reconstruction of erythropoiesis was augmented 1.5-fold in response to 0.1 mg/kg fullerenol C60(OH)24 and 3.3-fold in response to 0.2 mg/kg fullerenol. Both doses increased the number of oxyphylic erythroblasts in the bone marrow twofold, and 0.2 mg/kg fullerenol increased the red pulp fraction in the spleen by 9%; at the same time, fullerenol did not affect the counts of reticulocytes and erythrocytes, or the serum erythropoietin level in the case of normal erythropoiesis. Following hemorrhage, exposure to a 0.2 mg/kg dose of fullerenol C60(OH)24 increased serum erythropoietin levels, delayed the maturation of erythroid cells in EIs, partially blocked the release of reticulocytes from the bone marrow, and promoted an increase in the relative spleen weight and the red pulp fraction in the spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Medrek, F. Pluciski, and A. P. Mazurek, “Endohedral complexes of fullerene C60 with small convalent molecules (H2O, NH3, H2, 2H2, 3H2, 4H2, O2, O3) in the context of potential drug transporter system,” Acta Polon. Pharm. 70 (4), 659–665 (2013).

    Google Scholar 

  2. N. Venkatesan, J. Yoshimitsu, Y. Ito, N. Shibata, and K. Takada, “Liquid filled nanoparticles as a drug delivery tool for protein therapeutics,” Biomaterials 26 (34), 7154–7163 (2005).

    Article  Google Scholar 

  3. S. Trajković, S. Dobrić, V. Jacević, V. Dragojević-Simić, Z. Milovanović, and A. Dordević, “Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats,” Colloids Surf. B: Biointerfaces. 58 (1), 39–43 (2007).

    Article  Google Scholar 

  4. H. Meng, G. Xing, B. Sun, F. Zhao, H. Lei, W. Li, Y. Song, Z. Chen, H. Yuan, X. Wang, J. Long, C. Chen, X. Liang, N. Zhang, Z. Chai, and Y. Zhao, “Potent angiogenesis inhibition by the particulate form of fullerene derivatives,” ACS Nano 4 (5), 2773–2783 (2010).

    Article  Google Scholar 

  5. J. J. Ryan, H. R. Bateman, A. Stover, G. Gomez, S. K. Norton, W. Zhao, L. B. Schwartz, R. Lenk, and C. L. Kepley, “Fullerene nanomaterials inhibit the allergic response,” J. Immunol. 179 (1), 665–672 (2007).

    Article  Google Scholar 

  6. A. S. Basso, D. Frenkel, F. J. Quintana, F. A. Costa-Pinto, S. Petrovic-Stojkovic, L. Puckett, A. Monsonego, A. Bar-Shir, Y. Engel, M. Gozin, and H. L. Weiner, “Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis,” J. Clin. Invest. 118 (4), 1532–1543 (2008).

    Article  Google Scholar 

  7. V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic, and A. L. Simplício, “Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats,” Pharmacol. Rep. 62 (4), 707–718 (2010).

    Article  Google Scholar 

  8. A. Nemmar, P. H. Hoet, B. Vanquickenborne, D. Dinsdale, M. Thomeer, M. F. Hoylaerts, H. Vanbilloen, L. Mortelmans, and B. Nemery, “Passage of inhaled particles into the blood circulation in humans,” Circulation 105 (4), 411–414 (2002).

    Article  Google Scholar 

  9. Y. Zhang, Y. Bai, J. Jia, N. Gao, Y. Li, R. Zhang, G. Jiang, and B. Yan, “Perturbation of physiological systems by nanoparticles,” Chem. Soc. Rev. 43 (10), 3762–3809 (2014).

    Article  Google Scholar 

  10. M. Ghosh, A. Chakraborty, and A. Mukherjee, “Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro,” J. Appl. Toxicol. 33 (10), 1097–1110 (2013).

    Article  Google Scholar 

  11. A. Nemmar, S. Beegam, P. Yuvaraju, J. Yasin, A. Shahin, and B. H. Ali, “Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress,” Cell Physiol. Biochem. 34 (2), 255–265 (2014).

    Article  Google Scholar 

  12. S. Sachar and R. K. Saxena, “Cytotoxic effect of polydispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo,” PLoS One 6 (7), 22032 (2011).

    Article  Google Scholar 

  13. E. A. Kosenko, I. N. Solomadin, and Y. G. Kaminsky, “Effect of the ß-amyloid peptide Aß25-35 and fullerene C60 on the activity of enzymes in erythrocytes,” Russ. J. Bioorg. Chem. 35 (2), 157–162 (2009).

    Article  Google Scholar 

  14. V. A. Shipelin, E. N. Trushina, L. I. Avren’eva, S. Kh. Soto, S. Yu. Batishcheva, G. Yu. Mal’tsev, I. V. Gmoshinskii, S. A. Khotimchenko, and V. A. Tutel’yan, “Toxicological and sanitary characteristics of fullerenol (hydroxylated fullerene C60) in 28-day in vivo experiment,” Nanotechnol. Russ. 8, 799 (2013).

    Article  Google Scholar 

  15. T. Liu, R. Xing, Y. F. Zhou, J. Zhang, Y. Y. Su, K. Q. Zhang, Y. He, Y. H. Sima, and S. Q. Xu, “Hematopoiesis toxicity induced by CdTe quantum dots determined in an invertebrate model organism,” Biomaterials 35 (9), 2942–2951 (2014).

    Article  Google Scholar 

  16. Y. Jin, S. Chen, J. Duan, G. Jia, and J. Zhang, “Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage,” J. Inorg. Biochem. 146, 28–36 (2015).

    Article  Google Scholar 

  17. Y. Wang, Z. Chen, T. Ba, J. Pu, Y. Gu, J. Guo, and G. Jia, “Genotoxic effects of oral-exposed TiO2 nanoparticles on bone marrow cells in young rats,” Zhonghua Yu Fang Yi Xue Za Zhi 48 (9), 815–818 (2014).

    Google Scholar 

  18. I. Kopova, L. Bacakova, V. Lavrentiev, and J. Vacik, “Growth and potential damage of human bone-derived cells on fresh and aged fullerene C60 films,” Int. J. Mol. Sci 14 (5), 9182–9204 (2013).

    Article  Google Scholar 

  19. N. V. Tishevskaya, Yu. M. Zakharov, E. V. Golubotovskii, O. L. Kolesnikov, N. V. Trofimova, Yu. V. Arkhipenko, and T. G. Sazontova, “Effects of fullerenol C60(OH)24 on erythropoiesis in vitro,” Bull. Exp. Biol. Med. 157, 49 (2014).

    Article  Google Scholar 

  20. Yu. M. Zakharov, I. Yu. Mel’nikov, and A. G. Rassokhin, “Classification of Erythroblastic Islets of Marrow Taking Into Consideration with modification of their cellular structure,” Arkh. Anat., Gistol. Embriol., No. 5, 38–42 (1990).

    Google Scholar 

  21. S. Bancos, D. L. Stevens, and K. M. Tyner, “Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro,” Int. J. Nanomed., No. 10, 183–206 (2014).

    Google Scholar 

  22. J. Y. Lee, W. Park, and D. K. Yi, “Immunostimulatory effects of gold nanorod and silica-coated gold nanorod on RAW 264.7 mouse macrophages,” Toxicol. Lett. 209 (1), 51–57 (2012).

    Article  Google Scholar 

  23. C. F. Borgognoni, M. Mormann, Y. Qu, M. Schäfer, K. Langer, C. Öztürk, S. Wagner, C. Chen, Y. Zhao, H. Fuchs, and K. Riehemann, “Reaction of human macrophages on protein corona covered TiO2 nanoparticles,” Nanomedicine 11 (2), 275–282 (2015).

    Article  Google Scholar 

  24. R. Tordjman and S. Delaire, “Erythroblasts are a source of angiogenic factors,” Blood 97 (7), 1968–1974 (2001).

    Article  Google Scholar 

  25. H. Yamawaki and N. Ivai, “Cytotoxity of water soluble fullerene in vascular endothelial cells,” Am. J. Physiol. Cell 290 (6), 1495–1502 (2006).

    Article  Google Scholar 

  26. J. T. Kwon, D. S. Kim, A. Minai-Tehrani, S. K. Hwang, S. H. Chang, E. S. Lee, C. X. Xu, H. T. Lim, J. E. Kim, B. I. Yoon, G. H. An, K. H. Lee, J. K. Lee, and M. H. Cho, “Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice,” J. Occup. Health 51 (5), 423–431 (2009).

    Article  Google Scholar 

  27. G. Qu, C. Zhang, L. Yuan, J. He, Z. Wang, L. Wang, S. Liu, and G. Jiang, “Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling,” Nanoscale 4 (7), 2239–2244 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tishevskaya.

Additional information

Original Russian Text © N.V. Tishevskaya, E.V. Golubotovsky, K.O. Pharizova, D.M. Omarova, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishevskaya, N.V., Golubotovsky, E.V., Pharizova, K.O. et al. Effects of fullerenol C60(OH)24 on physiological and compensatory erythropoiesis. Nanotechnol Russia 10, 645–650 (2015). https://doi.org/10.1134/S1995078015040199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015040199

Keywords

Navigation