Skip to main content
Log in

Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A novel selenium nanobiocomposite consisting of X-ray amorphous nanoparticles of red elemental selenium (average size ∼67 nm) uniformly encapsulated into arabinogalactan macromolecules has been synthesized. The effect of this nanobiocomposite and its precursors (pure arabinogalactan and selenium dioxide) on the viability of a phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus (Spieck et Kotth.) Skapt et Burkh (C. michiganensis) and potato plants has been investigated in vitro. The bactericidal effects of free selenium dioxide and the nanocomposite obtained from the former (normalized selenium concentration 0.000625%) have been demonstrated. The targeted metabolic (trophic) delivery of antimicrobial selenium nanoparticles to the bacterial cells by the arabinogalactan matrix incorporating the particles was detected in the latter case. The treatment of potato plants with selenium dioxide was found to have a negative effect on peroxidase activity and plant growth. On the contrary, treating the plants with the selenium nanocomposite had no negative effects. Thus, the nanocomposite of elemental selenium and arabinogalactan produced in the present work can be considered a new antimicrobial agent for plant sanitation with minimal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Eichenlaub and K. H. Gartemann, “The clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens,” Annu. Rev. Phytopathol. 49, 445–464 (2011).

    Article  Google Scholar 

  2. “Clavibacter michiganensis subsp. Sepedonicus,” Data Sheets on Quarantine Pests. Prepared by CABI and EPPO for the EU under Contract No. 90/399003 (2005). http://www.eppo.int/QUARANTINE/bacteria/Clavibactersepedonicus/CORBSE.ds.pdf

  3. B. V. Anisimov, G. L. Belov, Yu. A. Varitsev, S. N. Elanskii, G. K. Zhuromskii, S. K. Zavriev, V. N. Zeiruk, V. G. Ivanyuk, M. A. Kuznetsova, M. P. Plyakhnevich, K. A. Pshechenkov, E. A. Simakov, N. P. Sklyarova, Z. Stashevski, A. I. Uskov, and I. M. Yashina, The Way to Protect Potato from Diseases, Invaders and Weeds (Kartofelevod, Moscow, 2009) [in Russian].

    Google Scholar 

  4. G. A. Secor, L. De Buhr, and N. C. Gudmestad, “Susceptibility of corynebacterium sepedonicum to disinfectants in vitro,” Plant Disease 72(7), 585–588 (1988).

    Article  Google Scholar 

  5. A. Travan, E. Marsich, I. Donati, and S. Paoletti, “Silver nanocomposites and their biomedical applications,” in Nanotechnologies for the Life Sciences (John Wiley and Sons, 2012), pp. 81–137.

    Google Scholar 

  6. C. Nicola and R. Mahendra, Nano-Antimicrobials: Progress and Prospects (Springer, Berlin, New York, 2012).

    Google Scholar 

  7. S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K. M. Fromm, “Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine,” Chem. Rev. 113(7), 4708–4754 (2013).

    Article  Google Scholar 

  8. S. Chernousova and M. Epple, “Silver as antibacterial agent: ion, nanoparticle, and metal,” Angew. Chem. 52(6), 1636–1653 (2013).

    Article  Google Scholar 

  9. B. A. Trofimov, B. G. Sukhov, G. P. Aleksandrova, S. A. Medvedeva, L. A. Grishchenko, A. G. Mal’kina, L. P. Feoktistova, A. N. Sapozhnikov, V. I. Dubrovina, E. F. Martynovich, V. V. Tirskii, and A. L. Semenov, “Nanocomposites with magnetic, optical, catalytic and biological properties based on arabinogalactan,” Dokl. Akad. Nauk 393(5), 634–635 (2003).

    Google Scholar 

  10. G. P. Aleksandrova, L. A. Grishchenko, T. V. Fadeeva, S. A. Medvedeva, B. G. Sukhov, and B. A. Trofimov, RF Patent No. 2278669 (2006).

  11. G. P. Aleksandrova, L. A. Grishchenko, T. V. Fadeeva, B. G. Sukhov, and B. A. Trofimov, “Formation features for silver and golden nanobiocomposites with antimicrobial activity,” Nanotekhnika, No. 23, 34–42 (2010).

    Google Scholar 

  12. M. V. Lesnichaya, G. P. Aleksandrova, L. P. Feoktistova, A. N. Sapozhnikov, T. V. Fadeeva, B. G. Sukhov, and B. A. Trofimov, “Silver containing nanocomposites based on galactomannan and carageenan: synthesis, structure, antimicrobial properties,” Russ. Chem. Bull. Int. Ed., No. 12, 2323–2328 (2010).

    Google Scholar 

  13. T. V. Ganenko, Ya. A. Kostyro, B. G. Sukhov, B. A. Trofimov, T. V. Fadeeva, S. A. Vereshchagina, and L. B. Koryakina, RF Patent No. 2462254 (2012).

  14. Ya. A. Kostyro, K. V. Alekseev, E. N. Petrova, E. N. Gumennikova, T. V. Romanko, V. G. Romanko, S. A. Lepekhova, I. A. Shurygina, L. B. Koryakina, T. V. Fadeeva, S. A. Vereshchagina, E. V. Koval’, M. G. Shurygin, V. A. Babkin, T. V. Ganenko, L. A. Grishchenko, L. A. Ostroukhova, B. G. Sukhov, and B. A. Trofimov, RF Patent No. 2513186 (2014).

  15. T. V. Fadeeva, I. A. Shurygina, B. G. Sukhov, M. K. Rai, M. G. Shurygin, V. A. Umanets, M. V. Lesnichaya, T. V. Kon’kova, and D. M. Shurygin, “Relationship between the structures and antimicrobial activities of argentic nanocomposites,” Bull. Russ. Acad. Sci. Phys. 79(2), 273–275 (2015).

    Article  Google Scholar 

  16. I. A. Shurygina, B. G. Sukhov, T. V. Fadeeva, V. A. Umanets, M. G. Shurygin, T. V. Ganenko, Ya. A. Kostyro, E. G. Grigoriev, and B. A. Trofimov, “Bactericidal action of Ag(0)-antithrombotic sulfated arabinogalactan nanocomposite: coevolution of initial nanocomposite and living microbial cell to a novel nonliving nanocomposite,” Nanomed.: Nanotechnol., Biol. Med. 7(6), 827–833 (2011).

    Article  Google Scholar 

  17. I. A. Graskova, G. B. Borovskii, and B. G. Sukhov, “Bactericide impact of polymer-stabilized multi-functional nano-composites,” J. Stress Physiol. Biochem. 8(3), S33 (2012).

    Google Scholar 

  18. A. I. Perfil’eva, A. V. Papkina, G. B. Borovskii, B. G. Sukhov, I. A. Graskova, and B. A. Trofimov, “Selenium nanocomposite effect onto Clavibacter michiganensis subsp. Sepedonicus as a function of hydrocarbons content in medium,” Izv. Vyssh. Uchebn. Zaved. Prikl. Khim. Biotekhnol. 5(2), 52–56 (2013).

    Google Scholar 

  19. B. G. Sukhov, N. N. Pogodaeva, S. V. Kuznetsov, Yu. N. Kupriyanovich, G. V. Yurinova, D. S. Selivanova, A. A. Pristavka, Yu. P. Dzhioev, S. M. Popkova, E. B. Rakova, P. A. Medvedeva, and B. A. Trofimov, “Prebiotic effect of native noncovalent arabinogalactan—flavonoid conjugates on bifidobacteria,” Russ. Chem. Bull. Int. Ed. 63(9), 1–6 (2014).

    Article  Google Scholar 

  20. A. R. Shahverdi, A. Fakhimi, G. Mosavat, P. Jafari-Fesharaki, S. Rezaie, and S. M. Rezayat, “Antifungal activity of biogenic selenium nanoparticles,” World Appl. Sci. J. 10(8), 918–922 (2010).

    Google Scholar 

  21. P. Tran and T. Webster, “Selenium nanoparticles inhibit staphylococcus aureus growth,” Int. J. Nanomed., No. 6, 1553–1558 (2011).

    Google Scholar 

  22. T. Schneider, A. Baldauf, L. A. Ba, V. Jamier, K. Khairan, M. Sarakbi, N. Reum, M. Schneider, A. Reseler, K. Becker, T. Burkholz, P. G. Winyard, M. Kelkel, M. Diederich, and C. Jacob, “Selective antimicrobial activity associated with sulfur nanoparticles,” J. Biomed. Nanotechnol. 7, 1–11 (2011).

    Article  Google Scholar 

  23. Q. Wang and T. J. Webster, “Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices,” J. Biomed. Mater. Res. A 100(12), 3205–3210 (2012).

    Article  Google Scholar 

  24. Q. Wang and T. J. Webster, “Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings,” Int. J. Nanomed. 8, 407–411 (2013).

    Google Scholar 

  25. P. A. Tran and T. J. Webster, “Antimicrobial selenium nanoparticle coatings on polymeric medical devices,” Nanotecnology 24(15), 1551 (2013).

    Article  Google Scholar 

  26. A. I. Ermakov, V. V. Arasimovich, N. P. Yarosh, et al., Biochemical Research Methods for Plants (Agropromizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  27. E. Kh. Padu, “Properties of peroxydase and phenylalanyl-ammonia-lyase under formation and lignification of wheat cell walls,” Fiziol. Rastenii 42(3), 408–415 (1995).

    Google Scholar 

  28. D. H. Bergey, J. G. Holt, and P. H. A. Sneath, Bergey’s Manual of Systematic Bacteriology, Ed. by P. H. A. Sneath (Williams & Wilkins, 1986).

  29. V. A. Andreeva, Peroxydase. Involvement in Plant Defense Mechanism (Nauka, Moscow, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Graskova.

Additional information

Original Russian Text © A.V. Papkina, A.I. Perfileva, M.A. Zhivet’yev, G.B. Borovskii, I.A. Graskova, I.V. Klimenkov, M.V. Lesnichaya, B.G. Sukhov, B.A. Trofimov, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papkina, A.V., Perfileva, A.I., Zhivet’yev, M.A. et al. Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants. Nanotechnol Russia 10, 484–491 (2015). https://doi.org/10.1134/S1995078015030131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030131

Keywords

Navigation