Skip to main content
Log in

Nanostructuring of the carbon macrofiber surface

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The method of synthesis of CNF/MF carbon-carbon composites by growing carbon nanofibers (CNFs) on a surface of carbon macrofibres (CMFs) is described. The method is based on catalytic gas-phase deposition of carbon (using C1, C2 hydrocarbons and the mix of C2-C4). Depending on the conditions of modification (composition of catalytic particles, type of hydrocarbon, and temperature), it is possible to obtain CNFs with different morphologies (feathery, fishbone, or platelet fibers). It is found that the modification of MFs by CNFs (0.2–0.3 g/gMF) allows increasing the specific surface area of the initial material in an order of magnitude (up to 25 m2/g). The method is proven to be applicable for the modification of various materials made of CMFs (chopped fibers, tows, and carbon fabric).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Rodriguez, M. E. Guzman, C. Lim, and B. Minaie, “Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics,” Carbon, No. 49, 937–948 (2011).

    Google Scholar 

  2. M. H. Al-Saleh and U. Sundararaj, “Review of the mechanical properties of carbon nanofiber/polymer composites,” Composites A, No. 42, 2126–2142 (2011).

    Google Scholar 

  3. A. I. Meleshko and S. P. Polovnikov, Carbon, Carbon Fibers, Carbon Composites (Sains-Press, Moscow, 2007) [in Russian].

    Google Scholar 

  4. http://e-plast.ru/stati/167-mirovoj-spros-na-kompozity-budet-vdvoe-uvelichen-k-2015-godu

  5. A. G. Shchurik, Artificial Carbon Materials (Perm, 2009) [in Russian].

    Google Scholar 

  6. Yu. Zhou, F. Pervin, Sh. Jeelani, and P. K. Mallick, “Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers,” J. Mater. Processing Technol., No. 198, 445–453 (2008).

    Google Scholar 

  7. Zh. Yang, J. Hollar and X. Shi, “Surface-sulfonated polystyrene microspheres improve crack resistance of carbon microfiber-reinforced portland cement mortar,” J. Mater. Sci., No. 45, 3497–3505 (2010).

    Google Scholar 

  8. Sh. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites,” J. Nanomater. (2013), ID 710175.

    Google Scholar 

  9. Q. Chen, W. Wu, Y. Zhao, M. Xi, T. Xu, and H. Fong, “Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites,” Composit. B, No. 58, 43–53 (2014).

    Google Scholar 

  10. S. Shimamura, Carbon Fibers (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  11. Yu. Luo, Y. Zhao, Yu. Duan, and Sh. Du, “Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing,” Mater. Des., No. 32, 941–946 (2011).

    Google Scholar 

  12. R. L. Zhang, Y. D. Huang, L. Liu, Y. R. Tang, D. Su, and L. W. Xu, “Effect of emulsifier content of sizing agent on the surface of carbon fibers and interface of its composites,” Appl. Surf. Sci., No. 257, 3519–3523 (2011).

    Google Scholar 

  13. R. L. Zhang, Y. D. Huang, D. Su, L. Liu, and Y. R. Tang, “Influence of sizing molecular weight on the properties of carbon fibers and its composites,” Mater. Des., No. 34, 649–654 (2012).

    Google Scholar 

  14. D. B. Curliss and J. E. Linkoln, US Patent No. 2009 0220409 A1.

  15. N. A. Pakhomov, Scientific Foundations of Catalysts Manufacturing. Methodological Recommendations (Novosibirsk, 2010) [in Russian].

    Google Scholar 

  16. L. Y. Meng, C. W. Moon, S. S. Im, KH. Lee, J. H. Byun, and S. J. Park, “Effect of Ni catalyst dispersion on the growth of carbon nanofibers onto carbon fibers,” Microporous Mesoporous Mater., No. 142, 26–31 (2011).

    Google Scholar 

  17. S. S. Tzeng, K. H. Hug, and T. H. Ko, “Growth of carbon nanofibers on activated carbon fiber fabrics,” Carbon, No. 44, 859–865 (2006).

    Google Scholar 

  18. V. Jourdain and C. Bichara, “Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition,” Carbon, No. 58, 2–39 (2013).

    Google Scholar 

  19. I. V. Mishakov, R. A. Buyanov, I. A. Strel’tsov, and A. A. Vedyagin, “The way to produce carbon nanosized fibers according to carbide cycle,” Kataliz Prom., No. 2, 26–31 (2008).

    Google Scholar 

  20. I. V. Mishakov, I. A. Strel’tsov, Yu. I. Bauman, A. A. Vedyagin, and R. A. Buyanov, “High surface carbon nanofibers: features of synthesis and morphology,” Izv. Vyssh. Uchebn. Zaved, Khim. Khim. Tekhnol. 54(9), 107–110 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Tokareva.

Additional information

Original Russian Text © I.V. Tokareva, I.V. Mishakov, D.V. Korneev, A.A. Vedyagin, K.S. Golokhvast, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokareva, I.V., Mishakov, I.V., Korneev, D.V. et al. Nanostructuring of the carbon macrofiber surface. Nanotechnol Russia 10, 158–164 (2015). https://doi.org/10.1134/S199507801501019X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801501019X

Keywords

Navigation