Skip to main content
Log in

Relaxation of photoconductivity in nanocrystalline indium oxide

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Photoelectric properties of nanocrystalline indium oxide synthesized by the sol-gel method with nanocrystal sizes of 7–20 nm have been studied. An increase in the conductance by UV-light illumination of several orders of magnitude and the retention of this high-conducting state after the light is switched off is revealed. The kinetics of photoconductivity decay in air, vacuum, and argon at room temperature is studied; it is found that the photoconductivity decay is described by an expanded exponent. A conclusion about the determining role of oxygen molecules in the phenomenon of residual photoconductivity is made. A model is proposed which explains permanent photoconductivity decay in nanocrystalline indium oxide. A correlation between structural and photoelectric features in the object under study is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Martyshov, E. A. Forsh, A. V. Marikutsa, et al., J. Nanoelectron. Optoelectron. 6, 452 (2011).

    Article  Google Scholar 

  2. E. A. Forsh, A. V. Marikutsa, M. N. Martyshov, et al., Nanotech. Russ. 7(3–4), 164 (2012).

    Article  Google Scholar 

  3. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Bristol, 1995).

    Google Scholar 

  4. A. Dixit, R. P. Panguluri, C. Sudakar, et al., Appl. Phys. Lett. 94, 252105–1 (2009).

    Article  Google Scholar 

  5. T. Wagner, C.-D. Kohl, S. Morandi, et al., Chem. Eur. J. 18, 8216 (2012).

    Article  Google Scholar 

  6. B. Pashmakov, B. Claflin, and B. Fritzsche, Solid State Commun. 86, 619 (1993).

    Article  Google Scholar 

  7. V. Brinzaria, M. Ivanova, B. K. Chob, M. Kameic, and G. Korotcenkov, Sensors Actuators B: Chem. 148, 427 (2010).

    Article  Google Scholar 

  8. D. Zhang, C. Li, S. Han, et al., Appl. Phys. A 76, 1–4 (2003).

    Google Scholar 

  9. E. A. Forsh, A. V. Marikutsa, M. N. Martyshov, et al., Zh. Eksp. Teor. Fiz. 138, 738 (2010).

    Google Scholar 

  10. S. Brunauer, The Adsorption of Gases and Vapors (Science, 2008).

    Google Scholar 

  11. H. Akazawa, Appl. Phys. Express 2, 081601 (2009).

    Article  Google Scholar 

  12. J. Kakalios, R. A. Street, and W. Jackson, Phys. Rev. Lett. 59, 1037 (1987).

    Article  Google Scholar 

  13. H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).

    Article  Google Scholar 

  14. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Forsh.

Additional information

Original Russian Text © E.A. Forsh, A.S. Ilyin, M.N. Martyshov, P.A. Forsh, P.K. Kashkarov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsh, E.A., Ilyin, A.S., Martyshov, M.N. et al. Relaxation of photoconductivity in nanocrystalline indium oxide. Nanotechnol Russia 9, 618–622 (2014). https://doi.org/10.1134/S1995078014060093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060093

Keywords

Navigation